On estimating the number of flows

Bruce Spang
Stanford University
bspang@stanford.edu

ABSTRACT

There are a number of suggested sizes for router buffers that depend
on the number of flows using the router. In an ideal setting, this is
an easy quantity to measure. Unfortunately, in a practical setting
there are numerous challenges in both both defining and estimating
the number of flows. We will discuss some of the complications
which arise when trying to estimate the number of flows in prac-
tice, and ways of working around these complications. We support
our arguments with data from real network traces, and provide
recommendations to network operators who need to estimate the
number of flows in their networks.

1 INTRODUCTION

Prior work suggests that in order to optimally size a router buffer,
we need to know the number of TCP flows sharing a link. For
example, in [2] Appenzeller et al. argue that a buffer for a link of
capacity C carrying n flows each with RTT R should be at least as
large as C - R/+/n to keep the link fully utilized.

On the other hand, Dhamdhere et al. in [9] argue that as a con-
sequence of the Mathis model of TCP [16], the packet loss in TCP
is proportional to the square of the number of flows. Therefore, a
buffer should grow with the number of flows in order to limit loss.

In order to test these assertions or follow their recommendations,
anetwork operator must first determine how many TCP flows share
the link. It is not at all obvious how to do so.

In this short paper we describe how the number of flows can
be estimated in practice. It is more challenging than existing work
suggests, and we argue it is an interesting research problem on its
own. We start by considering what “the number of flows” means
in an idealized setting, and then discuss how practice differs from
(and complicates) this idealized setting. We examine different ways
to estimate the number of flows, supporting our arguments with
data from real network traces.

We do not come up with one-size-fits-all recommendations for
estimating the number of flows, but do suggest some ways of esti-
mating the number of flows which may be feasible in practice.

2 THE IDEALIZED NUMBER OF FLOWS

In the idealized setting of existing buffer sizing work, the number
of flows is easy to estimate. In this setting, a flow is a set of packets
belonging to a particular TCP flow. Each flow starts with a SYN
packet, ends with a FIN or RST packet, and continually sends pack-
ets in between, according to the congestion control algorithm. The
number of flows at any instant is the number of TCP flows which
have sent a SYN packet and not yet sent a FIN or RST packet.

If we are able to observe all packets in this idealized setting,
measuring the number of flows is easy. Starting with no flows, we
just keep one counter of the number of flows, increment it for each
SYN packet, and decrement it for each FIN or RST packet. At any
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instant, this is the exact number of flows. This can be measured
periodically to observe how the number of flows changes over time,
and used to size router buffers.

3 ESTIMATING THE NUMBER OF FLOWS IN
PRACTICE

There are a number of complications which prevent this idealized
method from working well in practice. Our measurements may
miss the start of a flow, the end of a flow, and some of the packets
in between. In this section, we elaborate on each of these points
and describe techniques for estimating the number of flows.

Throughout this section, we will support our claims using data
from a real network. We use the 2019 CAIDA anonymized internet
trace dataset [5], specifically the 201901117-125910 trace, a complete
packet trace of about 50 seconds of traffic on a link from Sao Paulo
to New York.

3.1 Missing the start of flows

In practice, we may not be able to collect SYN packet to determine
the start of each flow. This may happen for many reasons. For
example, a flow may begin before our measurement does, routing
changes may result in a halfway-complete flow suddenly appearing
at a router, or a protocol of interest might not have an identifiable
type of starting packet.

This is a significant issue in the CAIDA dataset. Figure 1 shows
how the fraction of flows for which we have observed a SYN packet
changes over the duration of the trace. For each second in the
CAIDA trace, we count both the number of flows, and the number
of flows for which we have previously seen a SYN packet. The
number of flows with a SYN packet gradually increases over time,
but remains well under half of all flows. We expect this would
become less of a concern after a long period of measurement, but
limits the usefulness for short measurements.

To resolve the issue for short measurement periods, we define the
start of the flow as the first time a packet with a particular five tuple
appears at a router. This makes measurement more complicated.

Depending on the volume of traffic, it may be possible to record
all unique flow identifiers and in doing so, determine when a new
one arrives. Some routers may be able to do this automatically, using
NetFlow or sFlow. If the router can collect packet headers or flow
identifiers, perhaps via a SPAN port on the router, it can send those
to a collector. This collector could then increment a counter each
time it sees a new unique flow identifier and decrement a counter
each time a flow ends. Even in large internet service providers, this
could be a practical solution for short periods of time. Continuously
collecting full IPv4 and TCP headers for a 100 Gb/s link creates a
stream of only 2.6 Gb/s!, or 866Mb/s if we pare it down to only the
five tuple.

1With 39 bytes of header and maximum length 1500 byte packets.
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Figure 1: Number of flows per second for which the CAIDA
trace contains a SYN packet, compared to all flows per sec-
ond.

If the switch is programmable, it is possible to estimate the num-
ber of unique flow identifiers using the switch itself and subtract
the number of flows which have ended. For instance, the authors
in [15] implement NetFlow using a programmable switch. Estimat-
ing the number of unique identifiers could also be done using the
HyperLogLog algorithm [13], as done in [3, 10, 14, 20].

3.2 Missing the end of flows

In practice, we may not be able to tell when a flow has finished
sending data. Again, this may happen for many reasons. A client
may choose not to (or be physically unable to) send a FIN or RST
packet at flow completion. A non-TCP protocol may not have an
identifiable packet which marks the end of a flow.

In existing buffer sizing work, it is also not clear when a flow
contributes to the buffer size. Does a flow contribute when it has
started (i.e. a SYN) but not yet finished (i.e. a FIN, RST, or timeout),
even if it sends no packets? Or conversely, perhaps a flow only
contributes when it has a packet physically present in a buffer? In
the case of the Appenzeller result [2], which predicts a buffer size
that decreases with n, there must be a point at which most flows
do not have packets in the buffer. What is the correct value of n in
this case?

Or, consider video streaming flows (which make up a large frac-
tion of current Internet traffic). Video servers typically send chunks
of compressed video in an on/off pattern lasting many RTTs. If, for
example, a video server sends 3 second chunks with 3 seconds of
silence in-between, and the RTT is 100ms, then the silence period
is 30 RTTs. Should we consider the flow to be actively participating
in the buffering effect during the silence period, or not?

In all of these cases, we will need to make a judgement about
when a flow is no longer affecting the buffer size. A natural way to
do this is using a timeout—if a flow does not send a packet within
some amount of time T, we will consider it finished. It is important
to get this timeout right to get a good estimate for buffer sizing.
While it is not clear what the right definition is for existing buffer
sizing work, we conjecture that a timeout on the order of a few
RTTs (e.g. 100ms-1s) would be fairly accurate.

In the CAIDA trace, the length of this timeout has a major impact
on the number of flows we estimate. Figure 2 shows the number of
flows in the trace for various timeout values. We count the number
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Figure 2: Number of unique five tuples in CAIDA packet
trace during intervals of various durations.

of flows which send a packet within each timeout-sized interval,
and ignore outlying intervals (e.g. the first and last second of the
trace). There are about sixty thousand unique flows each second,
and as we look at smaller scales there are many fewer flows. The
number of flows does not shrink proportionally to the timeout value.
Depending on which timeout we use, the work of Appenzeller et
al. [2] would suggest a reduction of buffer size between 15 and 250.
Clearly, the choice of timeout is very important to get the correct
buffer size.

3.3 Sampling packets

So far we have described estimators for the case where every packet
during some measurement interval is either collected or analyzed
on-the-fly. In today’s large operator networks, this is often diffi-
cult to accomplish. Typically, packets are sampled before they are
analyzed, for example by including every Nth packet in the sam-
ple or including each packet independently with some probability
[1, 18]. This makes it much harder to correctly estimate the num-
ber of flows. We do not yet have practical recommendations for
estimating the number of flows using sampling.

Naively estimating the number flows by counting the unique
flows in the sample is biased. If packets arrived with a uniformly
random order, a flow with many packets during the interval will
be in the sample with high probability, while a flow with just a
few packets is less likely to be in the sample. This is a very real
concern in practice: Figure 3 shows a log-log plot of the distribution
of flow sizes for the CAIDA trace. The flow length distribution is
very skewed: many flows have only a few packets, while just a few
flows have many packets. This suggests that naively estimating the
number of flows by counting the number in a sample is unlikely
to give a good estimate, since there are many single-packet flows
which may not be included at all.

In [11], Duffield et al. suggest estimating the number of SYN
packets as a proxy for estimating the number of flows. Suppose
each packet is independently included in a sample with probability
p.1f N is the number of SYN packets in the sample, then Ns = N /p
is an unbiased estimate of the number of SYN packets. We ran this
SYN estimator on part of the CAIDA trace, including each packet
independently with a certain probability and estimating the number
of SYN packets. We repeated each estimate ten times. Figure 4 shows
the results. As expected, this is a very accurate estimator for the
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Figure 3: Distribution of flow sizes in one second of a CAIDA
packet trace.

number of SYNSs, especially as the fraction of packets included
in a sample increases. As we have already argued in Section 3.1,
however, the number of SYN packets in a trace is an inaccurate
estimate of the number of flows.

This problem has also been considered in statistics, where there
has been a long line of work on estimating the number of species
in an unknown population. In the 1940s, Corbet spent two years
in the field discovering many new species of butterflies, and was
curious how many more species of butterflies could be discovered
if he went back for another two years. Here, we could think of each
new species of butterflies as a new flow, and the entire population
of butterflies as the stream of packets in the router. Learning the
number of species in the entire population would correspond to
estimating the number of flows in the router.

In [12], Fisher, Corbet, and Williams gave statistical estimators
for this problem. This was followed by a long line of work, re-
viewed in [4]. More recently, there has been a line of theoretical
work proving upper and lower bounds for this problem [19, 21, 22],
culminating in the work of Orlitsky et al. [17] which describes an
efficient estimator with asymptotically optimal convergence rates.

To get a sense of how well these statistical estimators work for
packet traces, we ran the estimators on a subset of the 2019 CAIDA
passive packet trace [5]. Many of the estimators are available as
part of the Python package pydistinct [6]. We also implemented
the asymptotically optimal estimator of Orlitsky et al. [17] and the
Duffield et al. estimator based on SYN packets [11].

We tested the statistical estimators in a standard networking
sampling setting. We took the CAIDA trace, which consists of all
packets observed by their routers during the capture interval. We
took the first second of this trace, and counted the number of flows.
We then took a number of samples of this sub-trace by including
each packet in the sample independently with a certain probability.
We ran estimators for the number of species on these samples
to estimate the number of flows in the trace. We independently
repeated each sample one hundred times. Figure 5 show the result
of these estimates for a few of the more noteworthy estimators. The
Chao estimator is from [7], the Chao-Lee from [8], and the Naive
estimator simply counts the number of unique flows in the sample.

We believe the reason the species estimators were unable to
produce accurate results in the CAIDA trace is due to the packet
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Figure 4: Error in estimate of number of SYN packets from
a sample of packets. The shaded blue region is a 95% confi-
dence interval over ten trials.
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Figure 5: Error in estimates of number of flows from a sam-
ple of packets in the CAIDA dataset.

sampling model. The usual assumption for this work is that the sam-
ple is generated by picking each item in the population uniformly
with replacement. To test this, we generated a synthetic dataset
which matched this assumption. We took a subset of the CAIDA
trace which contained 2,341 flows and generated samples by sam-
pling from the packet trace with replacement. Figure 6 shows the
results of this experiment as the length of these samples increase.
As expected, all estimators significantly outperform the naive esti-
mate, and quite quickly converge towards accurate estimates of the
number of flows. We include the Orlitsky estimator here because
it is provably asymptotically optimal while the others are more
heuristic, however our implementation has overflow problems that
prevent it from working with larger samples.

4 DISCUSSION

Prior work has suggested that the size of a buffer depends on the
number of flows passing through it; particularly for TCP New Reno
where the flows interact through drops at the bottleneck. If we wish
to measure the relationship between the buffer size and the number
of flows in a production network, then we need to carefully decide
which flows are currently contributing to the buffer dynamics.

It is hard enough to decide which flows to count over what
interval. Even after we have decided on these things, we still need
to measure the number of flows. In practice, with current routers,
we are unlikely to be able to count or capture all unique flows over a
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long period of time; instead, we must settle for a short measurement
interval or an estimate of the number of flows. (14]
We make the following recommendations for operators who
are interested in measuring the number of flows for buffer sizing [15]
purposes:
If measurement infrastructure allows, it seems best to record all [16]
traffic during some measurement period and count the number of
unique flows. Repeat a few times and over different durations to gain [17]
confidence. A measurement duration of a few RTTs is a reasonable
place to start. As the duration of the measurement interval increases,
the number of flows will also likely increase. If the goal is to reduce (18]
the buffer size using the Appenzeller et al. result [2], a shorter
duration gives a more conservative estimate and may be more (9]
feasible to collect.
If collecting all traffic is infeasible, we suggest recording the (20]
number of SYN and FIN/RST packets over the period of several
days. Looking at the difference between the two over time may
give an estimate of the number of flows which is accurate to an
order of magnitude or so. However, if the difference between the [21]
two continually grows over time, it is likely a bad estimate of the
number of flows. [22]

Estimating the number of flows, especially for the purposes
of sizing router buffers, is not a straightforward task. We have
described a few approaches to estimating the number of flows which
may work well in practice. We hope that future buffer sizing work
will give concrete and actionable ways for operators to determine
the correct buffer size.
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