
Green With Envy: Unfair Congestion Control
Algorithms Can Be More Energy Efficient
Serhat Arslan

Stanford University
sarslan@stanford.edu

Sundararajan Renganathan
Stanford University

rsundar@stanford.edu

Bruce Spang
Stanford University

bspang@stanford.edu

ABSTRACT
Despite 40 years of active research on congestion control,
there has been little or no consideration of how it impacts
the energy usage of end-hosts or networking equipment. Par-
ticularly with the burgeoning energy consumption of data
centers and wide-area networks, we argue that the time is
ripe for the networking community to start thinking along
these lines. To pave the way, we conduct lab experiments
to measure the energy used by popular congestion control
algorithms. We consider various aspects of congestion control
and the rich research challenges that arise when we consider
energy efficiency. Specifically, we find that fairness for the
bandwidth allocated by congestion control can increase en-
ergy consumption by as high as 16%. We extrapolate these
results to projected savings on the order of $10 million/year
for large data centers.

CCS CONCEPTS
• Networks → Network economics; • Hardware → Impact
on the environment; Enterprise level and data centers power
issues;
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Figure 1: Increasing throughput imbalance for two competing
TCP flows can reduce energy usage.

1 INTRODUCTION
The Internet consumes 400-800 Terawatt-Hours of electricity
each year [20, 42]. Data centers alone account for approxi-
mately 3% of the global electricity usage [28], a figure pro-
jected to rise significantly in the future [5, 29]. Therefore,
any improvement in the energy efficiency of communication
networks will be beneficial—both environmentally, and finan-
cially for network owners.

Our community has done extensive research on congestion
control algorithms (CCAs) [1, 3, 4, 7, 12–15, 22, 24, 26, 27,
35, 36, 39, 43, 49, 61]. These algorithms decide when to send
traffic into the network, focusing on the optimal utilization
of resources, avoiding packet loss, and ensuring fair alloca-
tion of bandwidth among competing flows. However, there
is relatively little research on the energy impact of different
CCAs [56]. If such algorithms impact the energy usage of end-
hosts or networking equipment, developers can exploit this to
reduce the energy footprint—and cost—of the infrastructure.

In this paper, we explore the energy consequences of con-
gestion control algorithms. We measure their energy usage in
a lab setting and find that different CC behavior can have a
notable impact on end-host energy usage.

Our main finding is that increasing throughput unfair-
ness can improve energy efficiency. To demonstrate this, we
ran an experiment where two flows share a 10 Gbps bottle-
neck link, each transferring 10 Gbit of data. We limited the
throughput of one flow, allowing the remaining flow to use
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the rest of the link. Then, we measured the total energy us-
age during the experiment—from when the experiment began
until both flows successfully completed.

Figure 1 shows the results. Surprisingly, the way most
CCAs allocate bandwidth (the TCP fair share allocation where
both flows get 5 Gbps) is the least energy efficient. As unfair-
ness increases, energy efficiency improves. The most energy-
efficient bandwidth allocation is the least fair, the full speed,
then idle approach where one flow sends all its data at line
rate while the other idles, and then idles while the other flow
sends at line rate. In this experiment, this approach uses 16%
less energy than the fair approach. In §4.1, we show that the
TCP fair share is the worst allocation for energy efficiency.

We will go into detail about this result and how unfairness
improves energy efficiency in §4.1. The intuition is that mar-
ginal energy usage is a decreasing function of throughput.
As throughput increases, overall energy usage increases but
end-hosts become more efficient—the energy required for
each additional Gbps of throughput decreases. Sending at line
rate allows the flows to finish quickly and efficiently, and then
idle to reduce energy usage. Sending at the TCP fair share
requires sustained, higher energy usage.

In §4, we also discuss additional findings on how end-host
networking choices can impact energy usage at the end-hosts.
We show that increasing MTU, reducing flow completion
time (FCT), and changing CCAs can all reduce energy usage.
These strategies are noteworthy since the digital infrastructure
accounts for 3-4% of the global energy usage [28].

Our results suggest that to optimize energy usage, we as a
community should rethink our current approach to congestion
control. In §5 we go into the consequences of our results on
CC design, and more generally on other areas of networking
research including load balancing. By making the case for a
more comprehensive view of network design and operation,
we hope to inspire further research to push the boundary of
energy efficiency in communication networks.

2 RELATED WORK
CC is one of the most important mechanisms for the efficient
utilization of network resources. Modern algorithms report
almost full link utilization with minimal queuing [1, 7, 14,
36, 39, 61]. The primary performance metrics used for such
algorithms are flow completion time [19], tail queuing [18],
and fairness [34]. Further, CCAs are evaluated for the value
of the information they use [8, 62], their effect on buffer
sizing [52], and friendliness to different algorithms [55]. Yet,
none of these works consider energy consumption as a factor
when designing or evaluating CCAs.

The CC community for wide area networks has studied
Multi-Path TCP (MPTCP) to better utilize all the available
paths between the source and the destination [23]. This opened

up discussions for how to choose among different available
paths and energy was considered as one of the factors [37].
Observations made in [60] suggested that CPU’s energy con-
sumption for the transport protocol is directly proportional to
average throughput, and path delay. With the same spirit, [59]
recommended eliminating link sharing between sub-flows to
minimize CPU consumption for the same network resource to
save energy in data centers. Our work confirms these insights
and claims that similar savings can also be obtained between
independent flows that share the same bottleneck.

Choosing among available paths for the sake of minimal
energy consumption has also been considered for mobile
networks where energy is a scarce resource. In a congested
wireless link, retransmissions or control signaling can con-
sume a significant fraction of the energy for communication.
This is minimized with routing or CCAs that choose paths
or sending times based on the energy potential of the link,
packet loss rate, and congestion level [2, 40, 57].

One other approach for reducing energy consumption in
networks is to address the energy footprint of switches. Prior
work suggests that the load on an active switch does not affect
the power draw [21, 32]. However, reducing the line rate
or turning off the links completely during idle periods can
reduce energy consumption [44, 46]. Our work focuses on
the energy footprint of end-hosts’ transport layer, which is
complementary to reducing the energy footprint of switches.

The energy footprint of end-hosts has been studied for
cloud networks. Carefully placing VMs and balancing traffic
flows was shown to save energy up to 50% [54]. Similarly,
[33] proposed to consolidate the VMs of a large group of users
in the cloud to save energy instead of dedicating a physical
machine to each user. Our work is complementary and looks
at how CC can further reduce the energy footprint.

[21] shared data about energy usage of data centers, and
discussed reducing consumption at end-hosts by CPU volt-
age scaling and reducing idle energy consumption. The same
researchers also showed that power is a strictly concave, in-
creasing function of CPU utilization in data centers [10]. An
argument similar to our results, suggesting that it is more
energy-efficient to serve the load from a few, heavily loaded
servers rather than fairly balancing the load across all avail-
able servers. This approach was explored in prior work for
load balancing [11, 31, 41, 53].

Our findings on energy savings with unfair traffic allocation
have parallels with recent findings on improving performance
in machine learning clusters. Rajasekaran et al. [48] make
the observation that artificially creating unfair bandwidth
allocation to different multi-server ML tasks can prevent syn-
chronization between the tasks, facilitate better utilization of
the network resources for the entire training, and reduce the
training times of the models. Not only can unfairness improve
energy savings, it can also reduce flow completion times.
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3 EXPERIMENT SETUP
We use measurements from our physical testbed to understand
the energy consumption of networking and CC. Our testbed
consists of an Intel Tofino switch [17] and two servers, each
with 32 GB of RAM and a pair of 2.4Ghz Intel Xeon E5-2630
v3 CPUs with 16 hyper-threaded cores each. The servers run
Linux 5.10.0 and are connected to the network with Intel
82599ES 10Gb/s NICs. The sender server is connected to the
switch with 2×10Gb/s links where the interfaces are bonded
and packets are sent round-robin among the two. This ensures
that the bottleneck for all the experiments is the switch rather
than the sender’s NIC. We use an MTU of 9000 bytes (unless
stated otherwise) to achieve the full 10 Gb/s line rate.

The traffic for our experiments is generated via iperf3
with the CCAs included in the Linux kernel. We used TCP
Reno [12], CUBIC [49], DCTCP [3], BBR (v1) [14], Ve-
gas [13], Scalable [35], Westwood [24], and Highspeed TCP [22]
as well as Google’s alpha release of BBR2 [15] in our exper-
iments. In addition, we have created a new kernel module
that replaces any CC mechanism with a large, constant cwnd
value. We use this module as the baseline to compare the
energy consumption of CC-only computations.

We measure the energy consumption of the servers using
Intel’s Running Average Power Limit (RAPL) interface [47]
which accurately estimates the consumption in the CPUs via
software models [50]. The models maintain counters to keep
track of the cumulative energy used by the CPUs. For each
scenario, we read the energy counter for each CPU before and
after the experiment. The difference between the successive
counter reads gives us the energy used by the scenario for
that CPU. This enables automatic measurement of the energy
consumption for iperf3 traffic. We repeat each scenario 10
times and report standard deviations of our results.1

4 RESULTS
We investigate the energy usage of end-hosts’ network stack,
with an emphasis on congestion control. Our main finding
is presented in §4.1 which is generalized for loaded servers
in §4.2, leading to a prospective strategy for flow scheduling
and CC for greener energy footprint. We further discuss the
energy consumption for transmiting a certain amount of bytes
with different CCAs and MTU sizes in §4.3 and §4.4, respec-
tively. Finally, we list major performance metrics for CC that
correlate with the energy consumption in §4.5.

4.1 Unfair Allocation Reduces Energy Usage
In this section, we show that a TCP-fair allocation is the least
energy efficient bandwidth allocation under mild assumptions
about how throughput affects energy usage. We describe the

1Our source code for running and analyzing these experiments can be found
at https://github.com/brucespang/power.
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Figure 2: Rate of energy consumption for a CUBIC sender while
sending at different throughputs.
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Figure 3: Sending at line rate (on the right) allows each flow to
idle while the other sends leading to lower energy usage than
maintaining fair throughput (on the left).

results of a lab experiment where two CUBIC flows share a
10 Gb/s bottleneck link, each transferring 10 Gbit of data. We
limit the throughput of one flow, allowing the other flow to
use the remaining bandwidth, and measure the total energy
usage until both flows successfully complete.

Figure 1 shows the results. Energy efficiency improves as
unfairness increases. The most efficient bandwidth allocation
is the least fair, the "full speed, then idle" approach: one flow
sends all its data at line rate while the other idles, and idles
while the other flow sends at line rate. This consumes 16% less
energy than both flows sending at 5 Gbps until completion.

Looking closer, Figure 2 shows the power usage (energy
used per second) when CUBIC is limited to different average
throughputs. A throughput of zero corresponds to the server
idling. The blue line corresponds to sending smoothly at a
certain throughput over the duration of the experiment.

Note that in Figure 2, power usage is a strictly concave
function of throughput. Sending with 5 additional Gb/s in-
creases power usage by 60% (12.7 Watts) when the server
is idling, but only increases it by 5% (1.6 Watts) when the
server is already sending at 5 Gb/s. In this case, increasing
unfairness reduces power usage. One possible explanation
for concavity is that increasing throughput linearly increases
CPU utilization in our experiments, and CPU utilization has
been observed to be a concave function of power usage [21].

As an example of how Figure 2 implies that unfairness im-
proves energy efficiency, we calculate the power usage in two

https://github.com/brucespang/power
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Figure 4: Rate of energy consumption for a CUBIC sender with
different amounts of server loads in the background.

different settings: a fair scenario when both flows send equally
at 5 Gb/s and the "full speed, then idle" approach. Throughput
over time for these flows is depicted in Figure 3. In all cases,
all flows have the same 5 Gbps average throughput.

In the fair scenario (left), both of the flows would send
at 5 Gbps and take 2 seconds to finish. Based on Figure 2,
when both flows send at 5 Gbps, they use 34.23 Watts for
two seconds, for a total of 137 Watts. With the "full speed,
then idle" approach (right), flows switch between sending
all their data at line rate and idling. Each flow sends at 10
Gbps and uses 35.82 Watts for 1 second. The instantaneous
power usage is 5% higher than when they both send at 5 Gbps.
However, during their idle period, each flow consumes only
21.49 Watts. Over the entire experiment, the flows consume a
total of 114.63 Watts, 16% less than in the fair scenario.

In general, whenever marginal power usage is a decreasing
function of throughput, fairness is the least energy efficient
thing to do. We formalize this with the following theorem:

THEOREM 1. Let 𝑥 ∈ R>⊬𝑛 be the throughputs of 𝑛 flows
that share a link of capacity 𝐶. Let 𝑃 (𝑥) = ∑𝑛

𝑖=1 𝑝 (𝑥𝑖 ) be the
power usage given the throughputs 𝑥 . Let 𝑥∗ = {𝐶/𝑛, . . . ,𝐶/𝑛},
and let 𝑦 be some other set of throughputs where

∑𝑛
𝑖=0 𝑦𝑖 = 𝐶.

If 𝑝 (𝑥) is a strictly concave function, then 𝑃 (𝑥∗) > 𝑃 (𝑦).

PROOF. Since
∑𝑛

𝑖=0 𝑦𝑖 = 𝐶,

𝑃 (𝑥∗) = 𝑛𝑝 (𝐶/𝑛) = 𝑛𝑝 (𝑦1
𝑛

+ . . . + 𝑦𝑛

𝑛
). (1)

By strict concavity,

𝑝 ( 1
𝑛
𝑦1 + . . . + 1

𝑛
𝑦𝑛) >

1
𝑛
𝑝 (𝑦1) + . . . + 1

𝑛
𝑝 (𝑦𝑛).

Substituting into (1) yields the desired result as

𝑃 (𝑥∗) > 𝑝 (𝑦1) + . . . + 𝑝 (𝑦𝑛) = 𝑃 (𝑦).
□

We depict this argument visually in Figure 2. A throughput
of 𝑥 can be achieved either by sending at 𝑥 smoothly or by

bb
r

west
woo

d

hig
hsp

ee
d

sca
lab

le
ren

o
ve

ga
s

dct
cp

cub
ic

ba
sel

ine bb
r2

CC Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e 

En
er

gy
 (K

J)

MTU
1500 3000 6000 9000

Figure 5: Average energy consumption of the CCAs to transmit
50 GB of data

sending at full speed and then idling. If we send at full speed
and then idle, the power usage is a linear combination of the
full speed and the idle power – on the orange tangent line in
Figure 2. Since power usage is a strictly concave function,
this is strictly less power than sending smoothly.

4.2 Unfairness is Green For Loaded Hosts Too
To mimic more realistic scenarios, we also explore energy
consumption with different bandwidths while running back-
ground computations on the end-hosts. For this, we use the
stress tool in Linux and generate load on a certain number
of cores at the end-host in addition to the CUBIC traffic. Fig-
ure 4 shows the energy measurements for various compute
loads with respect to the communication bitrate.

As expected, reducing the networking-related energy con-
sumption reduces overall consumption less when the server
is already loaded with compute compared to when it is idle.
Nonetheless, the "full speed, then idle" approach can still
save 1% when the server load is 25%, or 0.17% when the
server load is 75%. This is a small percentage but can lead
to significant energy savings at scale. The energy to run a
typical data center rack is on the order of $10k/year [51].
With around 100k racks in a typical data center [38], a 1%
improvement corresponds to a cost savings of on the order of
$10 million/year.

4.3 Energy Consumption of CC Algorithms
Differ Notably

In addition to flow scheduling strategies, the use of different
CCAs also changes energy consumption. To demonstrate this,
we transmit 50 GB of data while using different algorithms
at the sender and measure the energy consumption. Since
the same amount of data is sent, the measurements capture
the same amount of serialization-related energy consumption.
Then, the difference in the measurements is limited to the
CC-related computations and the inflicted queuing operations
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Figure 6: Rate of energy consumption for the CCAs to transmit
50 GB of data.

on the machine which are the direct consequences of CCA
design. Figure 5 shows the results of this experiment. The
error bars on the figure represent the standard deviation of the
measurements among different runs of the same scenario.

We note that all the algorithms, except BBR2, consume
8.2% to 14.2% less energy than our custom baseline
which does not perform any CC computations. Instead, it
uses a constantly large cwnd value while running the same
logic for other TCP mechanisms, i.e., retransmission timeouts,
selective acknowledgments, and loss recovery.2 Although it
doesn’t run any logic to recompute cwnd value frequently,
its large cwnd value makes the sender bursty which causes
queuing at the network as well as the sender host resulting in
more frequent memory accesses and packet loss. This con-
firms that effective CC can reduce the energy overhead of
utilizing network resources Hence, energy consequences of
algorithms should be evaluated when designing them.

We also observe that the energy footprint differs by 40%
between the versions of BBR. Although we have not been able
to identify the exact reason for this significant difference yet,
we acknowledge that the BBR2 version in our testbed is the
alpha release of the algorithm which might be lacking efficient
implementation or prone to undiscovered bugs. Nonetheless,
it remains a strong signal that implementation maturity can
play an important role in the energy footprint of algorithms
and proper investment in this can help obtain savings.

We also investigate the rate of energy consumption, i.e.,
power, for the same set of CCAs. Figure 6 shows the average
amount of energy consumed per second for each algorithm
while transmitting 50 GB of data. The power difference be-
tween CCAs is about 14% which is significant considering
how much it would correspond to in large scale.

Note that both Figure 5 and Figure 6 list the CCAs with
an increasing order of energy usage for 1500 Bytes of MTU

2This mechanism would create a congestion collapse described in [30]. There-
fore we never use this module when there are multiple flows in the network.
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Figure 7: Energy consumption vs flow completion time for dif-
ferent CCAs transmitting 50 GB of data

scenarios. The order of algorithms change drastically between
the two figures. We compute the correlation between total
energy consumption vs power as −0.8. This confirms our
results in §4.1 that hosts may spend less energy per unit of
time, but take longer to complete and end up spending more
energy in total. As the senders stay active for longer times,
they pay the price for the overhead of keeping the server
active. More discussion about the effect of flow completion
times on energy consumption is provided in §4.5.

4.4 Increasing MTU Saves Energy
We also ran experiments to measure the impact of different
MTU sizes on energy usage as an example for how network
configuration may affect the energy footprint. The standard
MTU on the Internet is 1500 Bytes, but data center operators
often use larger MTU sizes to reduce the overhead of packet
processing and achieve higher line rates [25]. Our results con-
firm that larger MTUs can also reduce energy consumption
which is a known rule of thumb among switch designers.

With a single TCP connection transferring 50 GB of data,
we measured the energy consumption with standard 1500
byte MTUs, and compared to MTUs of 3, 6, and 9 KBytes.
Figure 5 presents the average energy spent throughout the ex-
periment for different configurations. As the MTU increases,
the number of packets generated to transmit the same amount
of data decreases, reducing the total overhead of packet pro-
cessing on the host. As a consequence, the total amount of
energy spent also decreases. In our results, increasing MTU
from 1500 bytes to 9KB can decrease energy consumption by
13.4% to 31.9%, depending on the CCA.

4.5 Reducing Flow Completion Time
Improves Energy Consumption

In our experiments, energy consumption is strongly corre-
lated with the flow completion time: the total time taken by
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iperf3 to deliver 50 GB of data. Figure 7 shows the rela-
tionship between energy consumption and the time it takes
to send the data for different CCAs. Note that the figure also
includes the measurements with different MTU sizes, hence
there are two major clusters of energy measurements also
shown within the axis inset. The cluster on the bottom left
corner of the inset is the group of measurements with large
MTU sizes whereas the cluster on the top right corner of the
inset is the measurements with an MTU size of 1500 Bytes.

One reason for the different FCT among CCAs is their abil-
ity to maintain high throughput by avoiding retransmissions.
Figure 8 shows the relationship between the number of re-
transmissions and the energy consumption for the same exper-
iments. The overall correlation between the energy consump-
tion and the retransmission is calculated as 0.47 excluding
the highly variable BBR2 measurements. The absence of con-
gestion control (baseline) naturally induces a higher rate
of retransmissions and ends up consuming a larger amount of
energy on average for all the MTU sizes tested. These results
indicate that designing a CCA that is capable of finishing
flows faster while achieving lower rates of packet loss is re-
quired also for environment-friendliness in addition to the
high-performance requirements of data center workloads.

5 FUTURE WORK & CONCLUSION
Congestion control algorithms focus on efficiently using net-
work resources, but their energy footprint has been largely
overlooked. In this work, we have begun to build an under-
standing of how networking algorithms can improve the en-
ergy usage of wireline networks. We believe that sharing these
results with our community can create a stream of research
that is actively working towards building greener data centers
in the future. To conclude, we discuss these future research
directions.

Our main result is that when marginal power usage is a
decreasing function of throughput, it is the most energy effi-
cient to be unfair. Our experiments confirm this in simple lab
settings, and it is not surprising given optimizations like TSO
which help modern transport layers run at line rate. Investi-
gating if this holds at scale, with hardware offloading [6], and
with the sorts of workloads used in production data centers is
needed as future work, including multiplexing multiple flows
at the same sender, and incast.

Higher energy efficiency by unfairness also has significant
consequences for how we design CCAs. Today, most CCAs
are specifically designed for fairness [1, 3, 7, 36, 39, 61].
Our results suggest that to improve energy efficiency, CCAs
should aim to send as fast as possible for minimal completion
time. One intriguing approach would be to measure the en-
ergy usage of existing transport protocols that approximate
the Shortest Remaining Processing Time first (SRPT) sched-
uling [4, 9, 27, 43].
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Figure 8: Energy consumption vs retransmissions for different
CCAs transmitting 50GB of data

Although we show that using different CCAs can impact
energy consumption, our results in §4.3 does not necessarily
expose the underlying reason for these differences. We expect
such differences to stem from unique mechanisms used for
each algorithm such as maintained flow state, packet pacing,
cwnd calculation arithmetic, and so on. We plan to investigate
the energy consequences of such mechanisms in future work.
This work would provide a clear guideline for how to design
green, high-performance CCAs.

We also acknowledge that our work is based on a relatively
small subset of CCAs in the literature. It is particularly in-
triguing for us to evaluate production algorithms of large data
centers, i.e., Swift [36], DCQCN [61], and HPCC [39]. Unfor-
tunately, not all algorithms have publicly available commer-
cial implementations, and evaluating them based on personal
implementations bears the risk of measuring inefficient im-
plementations as well as bugs. Therefore, we invite the com-
munity to build a benchmark for a standardized evaluation of
such algorithms. This would also enable the comparison of
new CC designs to existing work.

Finally, prior work suggests that utilization does not sig-
nificantly affect the energy consumption of switches and
routers [21, 32]. In the meantime, [45] has suggested that
networking equipment should be built to reduce power usage
when the load is reduced. If a data center contained such
equipment, our results imply that there could be significant
power savings by increasing load imbalance across data center
links. This would have consequences for routing algorithms
and load balancing algorithms (see [16, 58] for surveys). The
design and development of such network equipment remains
as an unexplored avenue for future data centers.
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