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ABSTRACT
On-demand streaming video traffic is managed by an adaptive bi-

trate (ABR) algorithmwhose job is to optimize quality of experience

(QoE) for a single video session. ABR algorithms leave the question

of sharing network resources up to transport-layer algorithms. We

observe that as the internet gets faster relative to video streaming

rates, this delegation of responsibility gives video traffic a burstier

on-off traffic pattern. In this paper, we show we can substantially

smooth video traffic to improve its interactions with the rest of

the internet, while maintaining the same or better QoE for stream-

ing video. We smooth video traffic with two design principles:

application-informed pacing, which allows ABR algorithms to set

an upper limit on packet-by-packet throughput, and by designing

ABR algorithms that work with pacing. We propose a joint ABR

and rate-control scheme, called Sammy, which selects both video

quality and pacing rates. We implement our scheme and evaluate

it at a large video streaming service. Our approach smooths video,

making it a more friendly neighbor to other internet applications.

One surprising result is that being friendlier requires no compro-

mise for the video traffic: in large scale, production experiments,

Sammy improves video QoE over an existing, extensively tested

and tuned production ABR algorithm.

CCS CONCEPTS
• Networks → Cross-layer protocols; Network resources allo-
cation; • Information systems → Multimedia streaming;

KEYWORDS
Video streaming; Adaptive bitrate algorithms; Congestion control

algorithms; Network friendliness

1 INTRODUCTION
On-demand streaming video traffic from services like Netflix and

YouTube currently comprises 60-75% of internet traffic [57]. This

fraction is likely even higher during peak viewing hours. With
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(a) Video traffic today. (b) Smoother, same QoE.

Figure 1: A few seconds of a typical streaming video session.
Today, video has on periods (light grey) where it sends data
as fast as the network supports (a). But as shown in (b), we
can smooth throughput and reduce congestion without im-
pacting video QoE.

a single application having such a large volume of traffic, as a

community we should make it as good a neighbor as possible. If we

do so, we will improve the internet for all applications that share it.

Streaming video traffic today has an on-off, bursty traffic pattern

shown in Figure 1a: every few seconds, video switches between an

on period of sending data as fast as possible and an off period of

silence. This is a well known phenomenon [54], and arises from

the standard architecture used to stream video. Videos are split

into “chunks” of a few seconds each and stored on a server. Server-

side congestion control algorithms send chunks to the video player

as fast as the network allows, creating the on periods shown in

Figure 1a. The video player then puts the chunks into a playback

buffer, to be played back as needed. Each chunk is encoded at a

number of different bitrates: from a higher quality, larger chunk-

size, to a lower quality, smaller chunk-size. An adaptive bitrate

(ABR) algorithm selects the bitrate of each chunk. When network

bandwidth is higher than the bitrate of the chunk, chunks arrive at

the client faster than they are played back and so the playback buffer

grows. Client buffers can only store a limited number of chunks, so

ABR algorithms periodically pause to make room for new chunks

creating the off periods in Figure 1a. For more background, see

Section 2.

Over the past decade, video traffic has been getting more bursty:

on periods are getting shorter, and off periods are getting longer. A

decade ago, home access speeds and video bitrates were both on

the order of a few megabits per second [15, 38], and so video traffic

https://doi.org/10.1145/3603269.3604839
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spent most of its time in on periods [54]. Since then, median last-

mile network data-rates to the home have improved, worldwide, to

tens or hundreds of megabits per second [16, 63]. Video encoding

has also improved: today a 1080p video requires only a fewmegabits

per second [38] and a 4k video requires typically less than twenty

megabits per second [45]. Videos download faster, playback buffers

fill up faster, and video traffic has shorter, faster on periods.
1

Video traffic can be smoother. Figure 1b shows the exact same

video streaming trace, smoothed out. We have reduced the chunk
throughput (the throughput during on periods) to the level of the

video bitrate—well below the network capacity. From the end user’s

perspective, the quality of experience (QoE) of the video is identical.

Video QoE is measured by video quality (how good the video looks),

play delay (how long the video takes to start playing), and rebuffers
(times when the video playback is interrupted because data is not

available). Both sessions in Figure 1 have the same QoE: quality is

the same (the same number of bytes are downloaded in the same

amount of time), the play delay is the same (the width of the dark

gray box is the same), and there are no rebuffers (the buffer never

goes to zero).

Smoothing video traffic as in Figure 1b has benefits to neigh-

boring traffic sharing the same network. There are well-studied

consequences to congestion control sending as fast as possible dur-

ing on periods, including increased packet loss and queueing delay,

bufferbloat [24], and unfairness between flows [1, 7, 8, 11, 12, 18, 32,

33, 35, 36, 42, 60, 68–71]. Conventional wisdom in queueing theory

also suggests that burstiness increases router queues and network

congestion [27], and so is detrimental to neighboring traffic.

By reducing chunk throughput below the capacity in Figure 1a,

we avoid these issues completely. There will be no queueing delay

or packet loss. A short HTTP request issued during an on period

could complete faster with more available bandwidth and lower

queueing delay. A longer-lived video conferencing flow would see

more consistent throughput and delay. Reducing burstiness should

benefit everyone.

The major challenge of making video traffic smoother at scale is

doing so without making video traffic perform worse. Video QoE

is important for the experience of the people watching the video

[17, 40, 75] and we would not want to smooth video traffic—the

majority use of the internet—by making its users suffer. There are

two different aspects of this challenge.

First, there is a fundamental limit to how much traffic can be

smoothed without impacting QoE. For example, we could smooth

Figure 1b even more by reducing the throughput before playback

starts to match the rest of the session. But this would increase play

delay. No buffer will be built up, so the playback will rebuffer if

throughput varies.

Second, ABR algorithms have historically had a core assumption

that measurements of chunk throughput give them accurate esti-

mates of the available bandwidth of the network [4, 31, 35, 59, 64–

66, 72, 73]. Reducing chunk throughput breaks this assumption, and

could cause an ABR algorithm to select lower qualities—artificially

lowering QoE.

1
Anecdotally, the median Netflix session today has an average throughput 13x higher

than its average bitrate.

In this paper, we present a novel solution to this challenge and

make video traffic smoother. Remarkably, our approach appears

to benefit everyone: we are able to substantially smooth video

traffic while slightly improving QoE relative to existing, finely-

tuned production video streaming systems.

To smooth video traffic, we allow ABR algorithms to directly

limit the packet-by-packet sending rate using a new technique

called application-informed pacing. An ABR algorithm might ask

for a chunk of video to be delivered at no more than one packet per

millisecond, and a congestion control algorithm sends packets no

faster than once every millisecond using TCP Pacing [1, 13, 26, 28,

47, 56, 71]. This allows the ABR algorithm to smooth out throughput

across the full range of timescales: from the level of a few packets,

to an entire chunk, to an entire video session. Application-informed

pacing is described in more detail in Section 3.2.

We next propose Sammy,2 an algorithm that selects both bitrates

and pacing rates to achieve high video QoE and improve smooth-

ness. Sammy is described in Section 4. Our key insight, described

in Section 3.1, is that while ABR algorithms have historically used
measurements of available bandwidth to make their decisions, they

do not need accurate estimates to achieve good QoE.

We implement Sammy at Netflix and evaluate it with large scale,

production experiments in Section 5. Sammy substantially smooths

video traffic: reducing chunk throughput to roughly three times

higher than the highest bitrate of a video. In production experi-

ments, this lowers chunk throughput by 61% at the median. This

improves congestion metrics: improving retransmissions by 35%,

and RTTs by 14%. Surprisingly, Sammy actually slightly improves
video QoE relative to production values despite this reduction in

throughput: improving initial video quality by 0.2%, overall quality

by 0.03%, and play delay by 1.3% while maintaining rebuffers.

We present illustrative lab experiments in Section 6 in which

Sammy improves the performance of neighboring traffic by increas-

ing its throughput and reducing queueing delay. Sammy improves

delay for a neighboring UDP flow by 51%, improves throughput for

a TCP flow by 28%, improves response times for HTTP traffic by

18%, and improves play delay for another video session by 4%.

Streaming video services are incentivized to deploy Sammy. First,

neighboring traffic could easily be from the same video service.

By improving performance for its neighbors, Sammy improves

performance for the video service itself. Second, Sammy forces an

ABR algorithm to be careful about its use of throughput estimates.

This exercise gave us a slight QoE improvement, and could yield

larger improvements for other ABR algorithms.

This work is a first step towards smoothing video traffic. We

conclude in Section 7 by highlighting that there is still more work

to be done. As a community, we have an opportunity to further

smooth traffic, video and beyond. After all, a smoother internet

benefits everyone.

To demonstrate the deployability of Sammy, we have released

an open source prototype [61] which uses off the shelf components

including an unmodified dash.js player and the Fastly CDN.

Ethical considerations: Our experiments involve live traffic

running on a large video streaming service. Sammy makes video

traffic friendlier to its neighbors while improving QoE, so we believe

2
As of this writing, Sammy is the current reigning world’s fastest snail [53].
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our experiments are bene�cial. Net�ix regularly runs rigorous A/B
testing for every change it makes to its service. Its customers have
the ability to opt out of experiments, if they choose to.

2 BACKGROUND AND RELATED WORK
The burstiness of video tra�c arises from the standard architec-
ture of modern video streaming services. One of the core design
principles of the internet is layering [14], conceptually separating
applications from underlying transport protocols like TCP or QUIC.
The internet community has kept a minimalist inter-layer interface,
giving applications little ability to express their service goals. As a
result, transport protocols optimize for transport-level goals: maxi-
mizing throughput, avoiding congestion, and splitting throughput
fairly. Adaptive bitrate (ABR) algorithms select bitrates to ensure
that viewers get the best quality of experience (QoE) possible, given
whatever throughput is picked by the congestion control algorithm.

In this section, we will give an overview of existing work and
describe why this architecture makes it di�cult to achieve our
goal of smoothing video tra�c while achieving high QoE. In this
section we focus on the most relevant papers. For a more complete
overview, there are a number of wider surveys [41, 52, 58].

2.1 ABR algorithms
When a network has limited bandwidth, there is a tradeo� between
the three major video QoE metrics: quality, startplay delay, and
rebu�ers. A video playback can have both high quality and no
rebu�ers if it incurs a high play delay by downloading the entire
video before it starts. It can start quickly in a slow network by
either picking a low quality or rebu�ering after playback starts.
The role of an ABR algorithm is to manage this tradeo� between
the di�erent QoE metrics, and ensure that the user gets the best
possible QoE. Note that this does not necessarily mean picking the
highest video quality�in a given network, a very low quality might
signi�cantly reduce rebu�ers and have the best QoE.

Videos are split into chunks of a few seconds each. Each chunk
is encoded in a ladder of di�erent bitrates: from a small, low-quality
version to a larger, high-quality version. A video provider will allow
a particular device in a particular network to use some subset of
this ladder based on the user's plan, device limitations, and other
business policies. The ABR algorithm chooses a rung from this
ladder for each chunk. The transport layer then splits that chunk
into packets and sends each packet to the video client. When chunks
are downloaded, they are added to a playback bu�er in the video
client. Even if the network is unavailable, the client can continue
playing as long as there are chunks in the bu�er.

When it takes too long to download a chunk, the bu�er can
shrink and it may be impossible to maintain high video quality
without rebu�ers. To deal with this, ABR algorithms can pick lower
bitrates to grow the bu�er and avoid rebu�ers. There are two main
types of ABR algorithms in use today:

Throughput-based: An ABR algorithm that takes explicit through-
put measurements from the network, and uses them to select bi-
trates [4, 35, 49, 59, 64, 66, 72, 73]. Typical algorithms produce some
estimate based on chunk throughput, and then use it to optimize
the various QoE metrics. ABR algorithms can also use throughput
in other ways, for example, Oboe [4] switches between several

parameter settings based on throughput measurements. VOXEL
makes modi�cations to the transport layer to drop video frames in
challenging network conditions. It is generally understood [72, 73]
that throughput-based algorithms will perform better the more
accurately they are able to predict throughput of upcoming chunks.

Bu�er-based: An ABR algorithm may select a bitrate based only
on the bu�er level [31, 65]. When the bu�er is low, the algorithm
will pick the lowest bitrate. When the bu�er is high, it will pick the
highest bitrate. Over time, these algorithms converge to an average
bitrate close to the average chunk throughput. In e�ect, the bu�er
size encodes the past available bandwidth measurements from the
network. In practice, bu�er-based algorithms can also include a
throughput-based component during startup [64].

Existing ABR algorithms rely on the available bandwidth mea-
surements produced by congestion control algorithms. By decreas-
ing chunk throughput, we could make existing ABR algorithms
perform worse. We discuss how we address this in Section 3.2.

Until now, ABR algorithms have focused on maximizing the qual-
ity of experience (QoE) for a video streaming client given whatever
throughput is chosen by congestion control algorithms. ABR algo-
rithms do not make choices about throughput. In contrast, our goal
is to design an algorithm that smooths video tra�c and achieves
high QoE while improving the internet for neighboring tra�c.

2.2 Congestion control
Once an ABR algorithm has selected a chunk, it is the job of con-
gestion control algorithms to decide how fast to send the packets of
that chunk into the network. Congestion control algorithms balance
competing goals: achieving high throughput, avoiding congestion,
and fairly splitting network resources among users [50, Sec. 3.2].

There is a long line of research on congestion control, and we
refer the reader to existing surveys for details [52]. It is challeng-
ing (if not impossible [74, 76]) to simultaneously achieve all the
goals of congestion control, and there are examples of congestion
control algorithms struggling with packet loss and queueing delay,
bu�erbloat [24], and unfairness [1, 7, 8, 11, 12, 18, 32, 33, 35, 36, 42,
60, 68� 71]. By focusing on the needs of video QoE, Sammy gives
up the goal of achieving high chunk throughput and so is able to
improve congestion and leave more bandwidth available for other
users of the network.

Our work uses the classic idea of TCP Pacing: a mechanism for
adding delay between successive packet sends to reduce the size
of bursts, and reduce packet drops and queueing delay [1, 13, 26,
28, 47, 56, 71]. Pacing gives packets a constant interarrival time,
which theoretically minimizes queueing delay in general settings
[27]. In practice, pacing reduces congestion [1, 47, 71]. Typically
the time between successive packets is set to a value larger than
the cwnd/RTT [1, 67], which reduces burstiness at the packet-level,
but does not reduce chunk throughput. BBR [13] is a congestion
control algorithm that directly adjusts the pace rate, but it aims to
pace close to the bottleneck capacity while Sammy aims to pace
signi�cantly lower.

There has been prior work on congestion control to improve
fairness among competing video clients. There are �scavenger� con-
gestion control algorithms like LEDBAT [55] and PCC Proteus [46],
that give up throughput when competing with a non-scavenger
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Paper Main Goal Smoothing Mechanism Eval. Preserves QoE? Smooths below avail. bandwidth?
Our work Smoothness ABR-informed Pacing Prod. 3 3
TCP Pacing [1] Packet bursts Pacing Prod. 3 7
Trickle baseline [25] Wasted bu�er Token Bucket ? ? 3
Trickle [25] Packet bursts CWND limit Prod. ? 3
[59] Wasted bu�er Delays TTFB Lab 7 7
SABRE #1 [44] Bu�erbloat RWND limit Lab 7 3
SABRE #2 [44] Bu�erbloat RWND limit Lab 7 3
[3] Video fairness Token Bucket Lab 7 3
[9] Video fairness Token Bucket Lab 7 7

Table 1: Related work on smoothing video tra�c either does not preserve QoE or does not reduce throughput below the available
network bandwidth.

congestion control algorithm. These were originally designed to
reduce the impact of BitTorrent tra�c on other internet tra�c [55],
but the PCC Proteus [46] authors describe a hybrid mode, in which
video tra�c switches from non-scavenger to scavenger mode when
the throughput exceeds a threshold. The authors show that this
improves performance when multiple video clients compete. Min-
erva [48] improves fairness between competing video sessions by
sharing proportionally based on a measure of perceptual quality.
These approaches will fully utilize the network when no neighbor-
ing tra�c is present. In contrast, Sammy does not focus on fairness
and instead consistently sends at a rate closer to the video bitrate.
Surprisingly, we show that consistently smoothing (even when
neighboring tra�c is not present) achieves similar performance to
fully utilizing the network.

2.3 Reducing Burstiness for Video Tra�c
There has been prior work on reducing the burstiness of video tra�c.
The novelty of our work is that by designing a joint ABR and rate
limiting algorithm, we are able to reduce chunk throughput below
the available bandwidth of a networkwhile achieving comparable
QoE to today's top ABR algorithms.

Related work on reducing video burstiness is summarized in
Table 1. There are a number of di�erences to our work. The base-
line algorithm described in Trickle [25] reduces chunk throughput
based on the video encoding rate with the goal of reducing wasted
bu�ers when videos end early. The impact of this algorithm on QoE,
smoothness, or neighboring tra�c is not evaluated in the paper but
since algorithm reduces bu�er sizes it likely has some impact on
QoE. In contrast, our work explores how to design an ABR algo-
rithm to improve smoothness while achieving high QoE. Work on
pacing like TCP Pacing [1] and Trickle (relative to their baseline)
[25] focuses on reducing per-packet burstiness while maintaining
congestion control-selected throughput. There is work [3, 44, 59]
which reduces throughput below a congestion control algorithm's
selected rate using mechanisms other than pacing, but this work
does not preserve video QoE (typically because it treats ABR algo-
rithms as a black box). Finally, there is some related work [9, 43]
which delays the time to �rst byte (TTFB) of the HTTP response.
This reduces bu�er sizes, but does not improve smoothness over
typical congestion control algorithms.

There has also been prior measurement work, observing that
some video tra�c reduces burstiness in practice using some of the
mechanisms described above [5, 54].

Our work has some similarity to real-time video streaming sys-
tems (like FaceTime and Zoom), that are designed di�erently than
on-demand systems (like Net�ix and YouTube). These systems also
need to pick bitrates and sending rates for videos. To pick bitrates,
real-time systems pick an encoding bitrate for each frame, while
on-demand systems pick bitrates from an o�ine-chosen ladder.
Real-time systems are built on top of UDP and so need to decide
when to send each packet, while on-demand systems have histor-
ically relied on congestion control algorithms. Because of these
di�erences, real-time systems have less of a distinction between
congestion control and bitrate adaptation schemes. For instance,
the Google Congestion Control algorithm [29] for WebRTC picks
sending rates using a delay-based algorithm and aims to match the
encoding bitrate to the sending rate. Salsify [23] relies on packet-
pair techniques, adjusts its sending rates to control queuing delay,
and picks bitrates based on the chosen sending rates. In contrast,
our work focuses on makingon-demandsystems friendlier while
achieving comparable QoE to today's top on-demand systems.

2.3.1 The challenge of reducing burstiness with existing ABR
algorithms.All prior work on reducing burstiness for video tra�c
falls short of achieving high video QoE because they treat ABR
algorithms as a black box.

Today's ABR algorithms are designed to use either explicit mea-
surements of available bandwidth (as in the case of throughput-
based ABR algorithms) or implicit ones collected through the ac-
cumulation of a bu�er (as with a bu�er-based algorithm). If we
reduce burstiness by reducing throughput, this changes available
bandwidth and can easily cause ABR algorithms to select lower
bitrates and reduce QoE.

As an example of how reducing chunk throughput can cause
QoE issues, imagine a simple ABR algorithm which measures the
minimum throughputGover the last few chunks and picks the
highest video bitrateŸ 2Gfor some constant2.3 Say we set2 = 0”5,
and picked a pacing rate of 1.5x the video bitrate. This would cause
a downward spiral [30]: we would start with video bitrate B, pick a
pacing rate of1”5 � � , and measure a throughput ofG= 1”5 � � . We
would then pick the highest video bitrate lower than0”5� ¹1”5� � º =

3This is the default dash.js algorithm when the bu�er is low [64].
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0”75� � , and would switch down. We would continue switching
down until we reached the lowest bitrate. This example shows that
we cannot treat ABR algorithms as a black box when reducing
burstiness and maintain the same QoE.

As another example, imagine all chunks are one second long,
and we pick a pace rate equal to the chunk bitrate. The chunk will
download in exactly the same amount of time as it takes to play,
one second. As a result, the playback bu�er will not increase and
remain at a near-zero level. If chunk throughput varied at all, there
would be a rebu�er. For bu�er-based algorithms, this also means
that the bu�er will not grow large enough to select a high bitrate
chunk, reducing video quality. Note that picking a pace rate equal to
or even lower than the chunk bitrate may be an e�ective approach.
If the video bu�er is relatively large, it may be desirable to give
up some bu�er growth to improve smoothness. By pacing at the
chunk bitrate, the bu�er can be kept at the same relatively high
level. By pacing slightly below the chunk bitrate, video tra�c can
be made even smoother while only slightly shrinking the bu�er.

3 DESIGN DISCUSSION
In this section, we will describe the key components of Sammy:
the key idea behind designing an ABR algorithm for pacing, and
the application-informed pacing mechanism Sammy uses to limit
throughput. In Section 4, we will use these components when in-
troducing Sammy.

3.1 ABR algorithms with paced throughput
Application-informed pacing reduces throughput below the avail-
able bandwidth of the network. With pacing, an ABR algorithm
might neverlearn the available bandwidth of a network. As dis-
cussed in Section 2, existing ABR algorithms rely on measurements
of available bandwidth. So how can an ABR algorithm optimize
QoE with pacing?

The main idea behind our approach is that while ABR algorithms
have historicallyusedestimates of available bandwidth to make
their decisions, they do notneedaccurate available bandwidth
estimates to achieve good QoE. An ABR algorithm only needs to
know whether the network can support the highest bitrate, or if it
needs to reduce video quality to improve QoE.

For example, imagine streaming a video with a top bitrate of
10 Mbps. Once we have built up a small playback bu�er, the ABR
algorithm only needs to know whether the network throughput is
high enough to sustain the top bitrate without rebu�ering. If the
available bandwidth is 100 Mbps or 1000 Mbps, a good algorithm
would still pick the top bitrate.

Instead of relying on accurate estimates of available bandwidth,
Sammy can use a pacing-informed ABR algorithm that instead
solves a decision problem:is the available bandwidth of the network
enough to pick a bitrate, or not?As we discuss in Section 4.2, many
commonly used ABR algorithms implicitly rely on such a decision
problem and do not need accurate estimates of available bandwidth.

An alternate approach would be to estimate available bandwidth
despite pacing, for instance using packet pair techniques [37, 39],
or not pacing some portion of requests. We did not pursue this, in
favor of an approach that avoids exact throughput estimation in
the �rst place.

3.2 Limiting throughput with
application-informed pacing

Streaming video tra�c is bursty because congestion control algo-
rithms send as fast as the available network bandwidth, which is
often higher than needed for good QoE. Our approach is to have the
ABR algorithm reduce the server's sending rate withapplication-
informed pacing: a new technique that allows applications to set
an upper limit on the server's sending rate. By carefully limiting
bursts, an ABR algorithm can reduce chunk throughput below the
available network bandwidth while achieving high QoE.

In application-informed pacing, the ABR algorithm selects a
pace rate and sends this rate to the server via an HTTP header. The
server uses TCP Pacing as described in Section 2 and [1, 28, 71] to
limit the sending rate at the server side. To achieve a desired rate of
' packets per second, the server delays sending packets to ensure
that there is a delay of at least1•' seconds between the starts of
successive packets.

Application-informed pacing runs in combination with a con-
gestion control algorithm, and the pace rate is an upper limit on
the sending rate. Congestion control algorithms can still limit the
sending rate by reducing the congestion window or pace rate. If an
application requests a pace rate higher than network bandwidth,
congestion control algorithms will operate as normal and pick a
lower sending rate. Because the resulting throughput isat mostthe
requested pace rate, Application-informed pacing is TCP-fair to
existing internet tra�c.

Deployability. Application-informed pacing is readily deploy-
able. TCP Pacing is already part of the Linux kernel [19], is used in
production at Google [13, 47, 56], and is available in certain NICs
[56]. In Linux, an HTTP server can implement application-informed
pacing by setting theSO_MAX_PACING_RATEsocket option [20]
to an application-provided value.

There is CDN support for application-informed pacing. Aka-
mai supports CMCD, a video standard that allows clients to limit
server-side throughput using thertp parameter [2, 6]. Fastly al-
lows setting TCP pace rates based on the value of an HTTP header
[22].

Application-informed pacing is an example of cross-layer design,
and there are lots of other ways to limit a server's throughput. A
system could use client receive windows to limit throughput [44],
could limit a server's congestion window [25], or could use a server-
side token bucket to reduce rates [3]. These techniques might be
more bursty than application-informed pacing, but might be more
easily deployable in certain settings.

4 SAMMY
We will now describe Sammy, our system that jointly selects bitrates
and pace rates to smooth out video tra�c while ensuring high QoE.
In a signi�cant shift from conventional video streaming systems,
Sammy's primary mechanism for throughput selection is pace rate
selection by the ABR algorithm, with congestion control acting
as a backup to ensure TCP-fairness to existing systems. Sammy
selects pace rates using information from the ABR algorithm, like
bu�er level and player state. To select video bitrates, Sammy relies
on a pacing-aware ABR algorithm which ensures high QoE even
without accurate estimates of available bandwidth. One of our
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main contributions is showing that a wide range of existing ABR
algorithmsalreadydo not require precise estimates of available
bandwidth for high QoE.

Sammy is divided into two distinct algorithms: one for the initial
phase (before playback starts), and one for the playing phase. This
division follows naturally from the di�erent QoE goals of each
phase. During the initial phase, it is important to start playback
quickly. After playback starts, there can be no change to play de-
lay and the QoE goal shifts towards avoiding rebu�ers with high
quality.

4.1 Algorithm for the Initial Phase
The initial phase of a video is the time period between when a
user initiates playback and the playback actually starts. During this
phase, ABR algorithms download chunks to build up a small bu�er
before beginning playback. Sammy has four competing QoE goals
in this phase:

(1) High initial quality: Sammy should pick high bitrates for
the �rst few chunks of video playback.

(2) Few rebu�ers: Sammy should build up a su�ciently large
bu�er before playback starts to avoid rebu�ers.

(3) Low play delay: Sammy should begin playback as quickly
as possible.

(4) Smoothness:Sammy should smooth out tra�c by picking
low pace rates.

In the initial phase, we will not aim to improve smoothness and will
allow conventional congestion control algorithms to pick chunk
throughput. If we reduce chunk throughput with the same initial
quality and starting bu�er size, we will be downloading the same
number of bytes in a longer period of time and potentially increase
play delay. The initial phase is a small fraction of tra�c (typically a
few seconds over a tens of minutes long session), so not pacing has
a minor impact on overall smoothness.

The challenge in the initial phase is making bitrate selections
with relatively few throughput measurements. ABR algorithms
typically deal with this challenge by using historical throughput
from the playing phase of previous sessions [34, 66]. But if Sammy
reduces chunk throughput in the playing phase of previous sessions,
this can change these estimates and result in lower initial quality
(as shown in experiments in Section 5.5).

In the initial phase, Sammy requires an ABR algorithm whose
initial bitrate selections are not a�ected by the throughput from the
playing phase of other sessions. This can be accomplished in many
ways. For an existing ABR algorithm that uses historical throughput
estimates, we add separateinitial throughput estimates and update
these estimates only with throughput from the initial phase. For
separate systems that predict initial throughput like CS2P [66], this
can be done by supplying this systemonly with initial throughput
measurements. Other ABR algorithm may need no modi�cation, for
instance an ABR algorithm which always selects the lowest quality
for the �rst chunk, or Pu�er [ 72] which uses statistics about the
establishment of a TCP connection to estimate initial throughput.

In our experiments in Section 5, we record historical throughput
measurements fromonly the initial phases of previous sessions on
the same device and use them to select the initial bitrate. Sammy

uses these estimates with Net�ix's existing bitrate selection al-
gorithm for the initial phase. This is described in pseudocode in
Algorithm 1.

4.2 Algorithm for the Playing phase
During the playing phase, Sammy selects both a bitrate and a pace
rate to balance three competing QoE goals:

(1) High quality: Sammy should pick high video bitrates.
(2) Few rebu�ers: Sammy should avoid playback interruptions

by keeping the bu�er above zero.
(3) Smoothness:Sammy should smooth out tra�c by picking

low pace rates.
Picking a lower pace rate can a�ect all three goals: it improves
smoothness, reduces throughput estimates (potentially impacting
video quality), and causes bu�ers to grow more slowly (potentially
impacting rebu�ers).

4.2.1 Sammy's conceptual design.Sammy includes two main
components in the playing phase: an ABR algorithm and a pace rate
selection algorithm. Our overall strategy for the playing phase will
be to take a given ABR algorithm and reduce chunk throughputs
as much as possible without impacting bitrate selection. If an ABR
algorithm picks the same sequence of bitrates with and without
pacing, Sammy will achieve the same video quality with and with-
out pacing. Achieving the sameQoEwith and without pacing is
then just a matter of ensuring that the bu�er is large enough to
prevent rebu�ers.

Instead of proposing a single new ABR algorithm, we will de-
scribe how to analyze a class ofpacing-awareABR algorithms to
understand how much throughput can be reduced without impact-
ing QoE. We then use a bu�er-based algorithm [31] to pick high
pace rates when the bu�er is low (growing the bu�er more quickly)
and lower pace rates when the bu�er is high (growing the bu�er
more slowly), while ensuring that the pace rates stay above the
minimum required throughput from our analysis. This approach
ensures that Sammy is easily deployable in existing, large-scale
video streaming services. Surprisingly, we show that throughput
can be signi�cantly lower without impacting QoE for existing ABR
algorithms.

Pacing-aware ABR algorithms: As discussed in Section 3.1,
instead of relying on an ABR algorithm whichaccurately estimates
available bandwidth, Sammy will use a pacing-aware ABR algo-
rithm that relies on a decision problem:is the available bandwidth
high enough to pick a bitrate, or not?This decision problem gives
us a threshold throughput�a minimum value of the algorithm's
throughput estimate that will cause it to pick the same bitrate. This
threshold gives Sammy room to decrease throughput via pacing.
As long as throughput estimates stay above this threshold, Sammy
can decrease chunk throughput without changing bitrate decisions.

Fortunately, many existing ABR algorithms already implicitly
use such a decision problem. As an example, consider a typical
throughput-based algorithm: the HYB algorithm [4], modi�ed to use
lookahead (i.e. take upcoming chunk sizes into consideration). This
analysis also applies to MPC algorithms [73] with appropriately
chosen utility functions, ABR algorithms without lookahead, and
so on. The HYB algorithm computes a throughput estimate from
recent throughput measurements, and multiplies this estimate by
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(a) HYB picks higher bitrates as the bu�er grows. (b) HYB has a minimum throughput needed to select a chunk.

Figure 2: By analyzing how an example throughput-based ABR algorithm (HYB) picks bitrates as a function of chunk throughput
estimates (a), we can �nd a lower bound on pace rates to avoid impacting QoE (b). For example, to pick a bitrate with an empty
bu�er, HYB requires a throughput at least 1•V times higher than that bitrate.

a parameterV 2 »0•1¼to o�set prediction errors. It then uses a
standard bu�er update equation [30] to predict how the bu�er
evolves over the lookahead duration. It picks the highest bitrate
which keeps the bu�er above zero.

To better understand the behavior of this algorithm, in Appen-
dix A we analyze how the playback bu�er evolves over time. Let
� ) be the lookahead duration of the upcoming) chunks. We show
that for a throughputG, bitrateA, and starting bu�er size� 0, the
bu�er evolves according to

� ) = � 0 ¸ � ) � � )
A

VG
”

HYB picks the highest bitrate which keeps� ) ¡ 0, which gives us
the following constraint on the bitrateA:

A� VG
�
1 ¸

� 0

� )

�
”

This function is shown in Figure 2a: as bu�er size and throughput
grows, HYB will pick higher bitrates4.

As a corollary, this gives us a minimum throughput required to
pick a bitrateA.

G� AV� 1
�
1 ¸

� 0

� )

� � 1
” (1)

We graph this function in Figure 2b: when the bu�er is empty,
HYB needs an estimate of throughput equal to the bitrate divided
by V. For example, ifV = 0”5 and the bu�er is empty, HYB will
pick a bitrate provided the throughput is at least twice the bitrate.
When the bu�er is lower, HYB can select a bitrate with a lower
throughput.

Equation 1 is the implicit function HYB uses to decide whether
or not throughput is high enough to select a bitrate. In order to
avoid impacting bitrate selection, we must pick a pace rate higher
than this value. When the bu�er is empty, we must pick a pace rate
of at least1•V times the top bitrate. When the bu�er is larger, we
can pick a lower pace rate without impacting bitrate selection.
4Previous research on ABR (e.g. [31]) has made a distinction between throughput-
based and bu�er-based algorithms. Interestingly, this analysis shows that while the
description of HYB seems to be a classic throughput-based algorithm, implicitly it uses
a bu�er-based approach to select bitrates.

Sammy's pace-rate selection. Videos are encoded into a ladder
of bitrates. Sammy takes the highest bitrate in this ladder, call this
valueA. When the bu�er is empty, Sammy paces at a multiple of
highest bitrate, e.g. at a rate of20 � Afor some constant20. When
the bu�er is full, Sammy paces at a di�erent multiple of the highest
bitrate, e.g. at a rate of21 � A for some constant21. We set the
parameters20•21 so that the resulting pace rate is always above the
minimum throughput required to pick the highest bitrate given by
Equation(1)and Figure 2. We can choose higher parameter values
than this to tune the tradeo� between rebu�ers and pace rates.
Once Sammy selects a pace rate, it communicates this rate to the
transport layer using application-informed pacing, as discussed in
Section 3.2.

4.3 Sammy's implementation
In the �rst part of the section, we have presented a more generic
version of Sammy that works with a variety of pacing-aware ABR
algorithms. Here we describe the speci�c implementation of Sammy
we use for experiments in Section 5. Sammy uses Net�ix's produc-
tion ABR algorithm, which is an MPC-style algorithm. This is a
proprietary algorithm and we cannot describe it in detail.

During the playing phase, we use Net�ix's production ABR al-
gorithm without modi�cation. During the initial phase, we record
a separate set of historical initial throughput measurements and
use these measurements in place of Net�ix's existing historical
throughput measurements. The distribution of initial throughput
is slightly di�erent than Net�ix's existing measurements, and so
accordingly we retune Net�ix's initial bitrate selection logic to
use these measurements without decreasing QoE. We present the
results of experiments with just these changes in Section 5.7.

Algorithm 1 summarizes Sammy's implementation. To demon-
strate the deployability of Sammy and show how its di�erent compo-
nents work in practice, we have released an open source prototype
[61] of Sammy's playing phase. Our prototype uses o� the shelf
components including an unmodi�ed dash.js player and the Fastly
CDN. Our prototype likely decreases QoE relative to the production
dash.js implementation (e.g. the parameters are untuned and we
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make no modi�cations to dash.js's initial bitrate selection), and we
leave achieving QoE parity as an exercise to the interested reader.

Algorithm 1 Sammy's bitrate and pace rate selection

Require: ABR algorithm, parameters20•21 � 0
if ABR is in initial phasethen

bitrate  ABR select¹initial throughput measurementsº
pace rate no pacing

else
bitrate  ABR select¹all throughput measurementsº
�  bu�er •max bu�er
multiplier  21 � � ¸ 20 � ¹1 � � º
highest bitrate maxbitrate2ladderbitrate
pace rate multiplier � highest bitrate

end if
return bitrate, pace rate

5 PRODUCTION EVALUATION
We implemented and evaluated Sammy on TV devices (TVs, set-top
boxes, game consoles, etc...) in production at Net�ix. To evaluate
its performance, we ran a series of A/B tests [62, 72] to tune our
algorithm and understand the tradeo�s between video QoE and
congestion-related metrics. We compared Sammy to Net�ix's exist-
ing extensively tested and �nely-tuned production algorithm, to
emphasize how Sammy can improve smoothness while maintaining
or improving QoE.

Each A/B test consisted of a control group running Net�ix's
production algorithm, and twenty treatment groups with di�erent
settings of Sammy's parameters. We randomly picked a small frac-
tion of Net�ix's users and randomly assigned them to either control
or one of the treatment groups. This resulted in a small fraction of
Net�ix's video sessions (< 1%). We ran the tests for about a week,
and measured the values of video- and transport-level metrics for
each session. Here we present the results of three experiments.
Over all the sessions included in these experiment, Net�ix's users
watched on the order of thousands ofyearsof video.

The experimental results show that Sammy signi�cantly im-
proves smoothness and reduces congestion-related metrics while
slightly improvingvideo QoE.

Parameter values: We will present results for a single set of
parameters for Sammy throughout the rest of the paper, and we
brie�y discuss other parameter values in Section 5.3. Speci�cally,
Sammy paces at 3.2x the maximum bitrate when the bu�er is empty,
and 2.8x the maximum bitrate when the bu�er is full using the
algorithm described in Section 4.2.

As discussed in Section 4.1, Sammy also includes changes to
initial throughput estimation. We present the results of these initial
changes (without pacing) in Section 5.4.

5.1 Sammy reduces congestion
We �rst show that Sammy signi�cantly improves smoothness, re-
transmissions, and round-trip times of Net�ix tra�c compared to
the existing production algorithm. Table 2 presents the percent
changes between Sammy and Net�ix's production algorithm with
95% con�dence intervals.

Type Metric % Chg. 95% CI
Congestion Chunk Throughput -61.0 [-61.8, -60.2]

% Retransmits -35.5 [-37.8, -33.4]
RTT -13.7 [-16.4, -12.3]

QoE Initial VMAF 0.14 [0.1, 0.2]
VMAF 0.04 [0.0, 0.1]

Play Delay -1.29 [-2.0, -0.6]
Rebu�ers (% sess) � [-7.1, 4.0]
Rebu�ers (/ hr) � [-17.1, 3.6]

Table 2: A/B Test results for Sammy including the percentage
change to control and con�dence intervals. All statistically
signi�cant metric movements are improvements over Net-
�ix's production algorithm.

Figure 3: Reduction in chunk throughput (95% CI) split by
each user's pre-experiment chunk throughput. Sammy re-
duces burstiness for users with pre-experiment throughput
¡ 6 Mbps.

Improving smoothness: To measure how much Sammy smooths
video tra�c, we focus on the averagechunk throughput(the through-
put during �on� periods). Video clients report the average through-
put for all chunk downloads in a session, weighted by download
time as in Appendix A. We calculate the median of these per-session
average chunk throughputs for both Net�ix's production algorithm
and Sammy. Sammy reduces chunk throughput by 61%. Sammy
does not reduce quality, so reducing chunk throughput causes on
periods to become longer, and increases the available bandwidth
for neighboring tra�c during on periods.

Sammy's ability to reduce throughput depends on how much
higher network bandwidth is relative to maximum bitrates. This
raises the question about how Sammy performs in slower networks.
For all users in the A/B test, we computed their pre-experiment
throughput by looking at the 95th percentile of their chunk through-
put for the week before the test began. We grouped users by the
range of pre-experiment throughput: <6 Mbps, 6-15 Mbps, 15-30
Mbps, 30-90 Mbps, and > 90 Mbps. We calculated average chunk
throughput within each group of users, and compared Sammy's
throughput of each group to that of the production algorithm. Fig-
ure 3 shows the percent change in throughput as a function of pre-
experiment throughput. For users with pre-experiment throughput
of more than 90 Mbps, Sammy reduces chunk throughput by 74%.
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As pre-experiment throughput decreases, Sammy reduces chunk
throughput less. But Sammy does signi�cantly reduce throughput
(improving smoothness) for all pre-experiment throughputs more
than 6 Mbps.

Reducing network congestion: Intuitively, reducing chunk
throughput and improving smoothness should translate into im-
provements in congestion-related metrics, speci�cally lower packet
retransmission rates and round-trip times (RTTs). This is supported
by our A/B test results.

We calculate the fraction of retransmitted bytes over all bytes
sent by TCP for each session. Sammy improves the median fraction
of retransmitted bytes over all sessions by 36%. We measure RTTs
for each packet sent by TCP and store them for each TCP connection
in a t-digest [21]. We merge the t-digests for all TCP connections in a
session, and estimate the median RTT for the session. We measure
the median of median RTTs over all sessions. Sammy improves
RTTs by 14%.

Given Sammy reduces chunk throughput, improves smoothness,
and reduces congestion for Net�ix tra�c, it is plausible that neigh-
boring tra�c sharing a bottleneck link with Net�ix's tra�c should
see improvements as well. Section 6 shows in a lab setting that
Sammy's improvements in congestion-related metrics can translate
to QoE improvements for neighboring tra�c.

5.2 Sammy improves QoE
It is not surprising that picking lower pace rates would improve
smoothness and network congestion, but more surprisingly, we
show this can be done at no cost to the video user experience. In
our experiments, Sammyslightly improvesQoE. These results are
summarized in Table 2.

Improving quality and play delay: We measure video quality
by Video Multi-method Assessment Fusion (VMAF) [10], a method
for estimating a viewer's perception of a video's visual quality. We
calculate a time-weighted average of VMAF to get a score for each
session, and measure the median score over all sessions. Sammy
slightly increases overall VMAF, which is driven primarily by an
increase in initial VMAF (the VMAF during the �rst twenty seconds
of video playback). In other words, Sammy's video quality is slightly
higher than with Net�ix's production algorithm.

We note that this is a very minor improvement to VMAF. It is
a statistically signi�cant improvement in our experiments, but it
is a small and potentially imperceptible improvement. The more
important point is that Sammy maintains a QoE that is at least on
par to Net�ix's existing, �nely-tuned production algorithm, with
more than 60% lower per-chunk throughput.

Sammy also slightly improves play delay by about 1.3%. This may
seem surprising since we do not do any pacing in the initial part of
the section. As we show in Section 5.4, the improvements to QoE
(play delay included) come primarily from usingonly estimates of
initial throughput during the initial phase.

Maintaining rebu�ers: Sammy has no statistically signi�cant
impact on any other aspect of QoE. There is no signi�cant change
in rebu�ers: both the fraction of sessions that have at least one
rebu�er, and the number of rebu�ers per hour streamed.

Figure 4: Change in retransmissions as a function of the
pacing burst size in a production A/B test. Lower burst sizes
improve retransmissions.

Figure 5: Tradeo� between video quality (VMAF) and chunk
throughput for di�erent choices of parameters.

5.3 Tradeo�s and parameter settings
Sammy has a number of parameters that can be tuned, including
parameters for pace rate selection and for the chosen ABR algorithm.
We used Ax [51] to search the parameter space and �nd a Pareto
improvement to all metrics of interest across multiple rounds of
A/B testing.

Di�erent parameter settings allow us to trade o� between chunk
throughput and quality, as shown in Figure 5. Each point represents
one treatment group in an A/B test, each with a di�erent value of
parameter settings. The x-axis is the % change in chunk through-
put for that group, and the y-axis is the % change in VMAF. The
parameters we selected reduced chunk throughput by 61% rela-
tive to control, while increasing VMAF by 0.04%. Other parameter
settings give other points on this tradeo�. Eventually, decreasing
throughput results in a decrease in VMAF.

5.4 QoE di�erences are primarily from initial
phase

Sammy includes two sets of changes over Net�ix's production ABR
algorithm: reducing chunk throughput using pacing, and changes
to the initial phase including using estimates of initial throughput
and retuning Net�ix's initial bitrate selection logic. Here we report
on the results of an A/B test including only the changes to the initial
phase, and not pacing.
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Metric % Chg. 95% CI
Initial VMAF 0.30 [0.28,0.35]

VMAF � [-1.8e-5, 1.7e-4]
Play Delay -0.40 [-0.7, -0.1]

Rebu�ers (% sess) � [-1.6,1.8]
Rebu�ers (/ hr) � [-3.1,4.2]

Table 3: A/B Test results for Sammy's changes to initial
throughput estimation and bitrate selection. All statistically
signi�cant metric movements are improvements over Net-
�ix's production algorithm.

In this A/B test, there was a slight improvement in initial VMAF
of about 0.3%, in play delay of about 0.4%, and in no other metrics.
These results are run as a separate A/B test, and so shouldn't be
directly compared to the results of Sammy in Table 2. But the
direction of improvement and magnitude is similar in the two tests.

These results, plus our intuition that pacing late in the session
should not impact the initial phase (including initial VMAF and
play delay), suggests that Sammy's QoE improvements do not come
from pacing. Instead, the results suggest that the improvements
come primarily from the changes to initial bitrate selection.

5.5 A baseline approach reduces QoE
Sammy works hard to avoid reducing QoE with pacing, and a
natural question is whether this work is necessary. Why not just
pick a pace rate a bit higher than the maximum bitrate and call
it a day? We ran an experiment which shows that this approach
underperforms Sammy in all of our goals.

We ran an experiment with the production Net�ix ABR algorithm
in which we limited the pacing rate for each chunk (including in
the initial phase) to 4x the maximum bitrate. We made no other
changes. Pacing in this way reduced chunk throughput by 53% and
we observed a degradation in most of the major components of
video QoE: play delay increased by 6%, and VMAF decreased by
0.2%. The play delay increase was enough to reduce the overall level
of streaming, causing the experiment to be automatically stopped
by safety systems.

Sammy outperforms this approach in both congestion and QoE-
related metrics. Sammy achieves ahigherreduction in chunk through-
put of 61% whileimprovingQoE. If we instead chose parameters
from Figure 5 which reduced QoE, Sammy would achieve a higher
throughput reduction of more than 80% for a much lower VMAF
reduction of 0.07%.

5.6 E�ect of burst size
With pacing, there is an option of how large a burst to send at a time.
To pace at 12 Mbps with 1500 byte MTU, we could send one packet
every 1 ms, two packets every 2 ms, or 10 packets every 10ms,
and so on. Intuitively, there is a tradeo� in picking the burst size:
smaller bursts should improve congestion-related metrics, but also
reduce opportunities for segmentation o�oad which can increase
CPU usage.

Net�ix's TCP implementation's default behaviour is to limit
line-rate bursts to no more than 40 packets at a time. We ran an

Figure 6: Initial quality di�erence over time during an A/B
test. The treatment algorithm is missing historical data at
the beginning of the experiment, and so performs worse over
the entire experiment.

experiment where we paced at a constant 2x the maximum bitrate,
and adjusted the per-packet bursts from 4 packets up to 40 packets.
Figure 4 shows the results of this experiment.

Pacing with a burst size of 40 packets corresponds to only re-
ducing chunk throughput, and not reducing the maximum possible
size of per-packet bursts. This reduces retransmissions by 40% rela-
tive to not pacing. As the maximum burst size decreases, retrans-
mits reduce by up to 60% relative to not pacing. But as the burst
size decreases, there is no statistically di�erence in either chunk
throughput or video QoE metrics.

This result shows why it is bene�cial to use TCP Pacing instead
of capping the congestion window as in prior work [25]. In our
experiments, we use a burst size of 4 packets for CPU e�ciency.
By reducing the burst size from 40 (as it would be if we capped the
congestion window) to a burst size of 4, we improve retransmissions
by an additional 20%.

5.7 E�ect of historical data
As described in Section 4.1, Sammy and prior work use historical
throughput measurements for initial bitrate selection. Doing so
creates a dependency between successive sessions: the throughput
at the beginning of one session impacts the bitrate selection deci-
sions at the beginning of the next. Using historical data improves
performance, but the dependency creates challenges for evaluation.

As an example, we ran an experiment simulating introducing
a new historical estimate. The treatment group started with no
historical measurements, while the control group had historical
measurements. Both groups updated historical throughput with the
same estimates, and there were no other di�erences between the
groups. Figure 6 shows the percent di�erence in initial quality over
the course of the experiment. The treatment group started with
much lower initial quality and surprisingly it stayed lower over the
course of the experiment. It took a week for the initial quality of
the treatment group to reach its closest point to the control group.

To deal with this challenge, we reset historical throughput infor-
mation in both treatment and control groups in all experiments to
enable an �apples-to-apples� comparison between the two.
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