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ABSTRACT
On-demand streaming video traffic is managed by an adaptive bi-

trate (ABR) algorithmwhose job is to optimize quality of experience

(QoE) for a single video session. ABR algorithms leave the question

of sharing network resources up to transport-layer algorithms. We

observe that as the internet gets faster relative to video streaming

rates, this delegation of responsibility gives video traffic a burstier

on-off traffic pattern. In this paper, we show we can substantially

smooth video traffic to improve its interactions with the rest of

the internet, while maintaining the same or better QoE for stream-

ing video. We smooth video traffic with two design principles:

application-informed pacing, which allows ABR algorithms to set

an upper limit on packet-by-packet throughput, and by designing

ABR algorithms that work with pacing. We propose a joint ABR

and rate-control scheme, called Sammy, which selects both video

quality and pacing rates. We implement our scheme and evaluate

it at a large video streaming service. Our approach smooths video,

making it a more friendly neighbor to other internet applications.

One surprising result is that being friendlier requires no compro-

mise for the video traffic: in large scale, production experiments,

Sammy improves video QoE over an existing, extensively tested

and tuned production ABR algorithm.

CCS CONCEPTS
• Networks → Cross-layer protocols; Network resources allo-
cation; • Information systems → Multimedia streaming;

KEYWORDS
Video streaming; Adaptive bitrate algorithms; Congestion control

algorithms; Network friendliness

1 INTRODUCTION
On-demand streaming video traffic from services like Netflix and

YouTube currently comprises 60-75% of internet traffic [57]. This

fraction is likely even higher during peak viewing hours. With
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(a) Video traffic today. (b) Smoother, same QoE.

Figure 1: A few seconds of a typical streaming video session.
Today, video has on periods (light grey) where it sends data
as fast as the network supports (a). But as shown in (b), we
can smooth throughput and reduce congestion without im-
pacting video QoE.

a single application having such a large volume of traffic, as a

community we should make it as good a neighbor as possible. If we

do so, we will improve the internet for all applications that share it.

Streaming video traffic today has an on-off, bursty traffic pattern

shown in Figure 1a: every few seconds, video switches between an

on period of sending data as fast as possible and an off period of

silence. This is a well known phenomenon [54], and arises from

the standard architecture used to stream video. Videos are split

into “chunks” of a few seconds each and stored on a server. Server-

side congestion control algorithms send chunks to the video player

as fast as the network allows, creating the on periods shown in

Figure 1a. The video player then puts the chunks into a playback

buffer, to be played back as needed. Each chunk is encoded at a

number of different bitrates: from a higher quality, larger chunk-

size, to a lower quality, smaller chunk-size. An adaptive bitrate

(ABR) algorithm selects the bitrate of each chunk. When network

bandwidth is higher than the bitrate of the chunk, chunks arrive at

the client faster than they are played back and so the playback buffer

grows. Client buffers can only store a limited number of chunks, so

ABR algorithms periodically pause to make room for new chunks

creating the off periods in Figure 1a. For more background, see

Section 2.

Over the past decade, video traffic has been getting more bursty:

on periods are getting shorter, and off periods are getting longer. A

decade ago, home access speeds and video bitrates were both on

the order of a few megabits per second [15, 38], and so video traffic

https://doi.org/10.1145/3603269.3604839
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spent most of its time in on periods [54]. Since then, median last-

mile network data-rates to the home have improved, worldwide, to

tens or hundreds of megabits per second [16, 63]. Video encoding

has also improved: today a 1080p video requires only a fewmegabits

per second [38] and a 4k video requires typically less than twenty

megabits per second [45]. Videos download faster, playback buffers

fill up faster, and video traffic has shorter, faster on periods.
1

Video traffic can be smoother. Figure 1b shows the exact same

video streaming trace, smoothed out. We have reduced the chunk
throughput (the throughput during on periods) to the level of the

video bitrate—well below the network capacity. From the end user’s

perspective, the quality of experience (QoE) of the video is identical.

Video QoE is measured by video quality (how good the video looks),

play delay (how long the video takes to start playing), and rebuffers
(times when the video playback is interrupted because data is not

available). Both sessions in Figure 1 have the same QoE: quality is

the same (the same number of bytes are downloaded in the same

amount of time), the play delay is the same (the width of the dark

gray box is the same), and there are no rebuffers (the buffer never

goes to zero).

Smoothing video traffic as in Figure 1b has benefits to neigh-

boring traffic sharing the same network. There are well-studied

consequences to congestion control sending as fast as possible dur-

ing on periods, including increased packet loss and queueing delay,

bufferbloat [24], and unfairness between flows [1, 7, 8, 11, 12, 18, 32,

33, 35, 36, 42, 60, 68–71]. Conventional wisdom in queueing theory

also suggests that burstiness increases router queues and network

congestion [27], and so is detrimental to neighboring traffic.

By reducing chunk throughput below the capacity in Figure 1a,

we avoid these issues completely. There will be no queueing delay

or packet loss. A short HTTP request issued during an on period

could complete faster with more available bandwidth and lower

queueing delay. A longer-lived video conferencing flow would see

more consistent throughput and delay. Reducing burstiness should

benefit everyone.

The major challenge of making video traffic smoother at scale is

doing so without making video traffic perform worse. Video QoE

is important for the experience of the people watching the video

[17, 40, 75] and we would not want to smooth video traffic—the

majority use of the internet—by making its users suffer. There are

two different aspects of this challenge.

First, there is a fundamental limit to how much traffic can be

smoothed without impacting QoE. For example, we could smooth

Figure 1b even more by reducing the throughput before playback

starts to match the rest of the session. But this would increase play

delay. No buffer will be built up, so the playback will rebuffer if

throughput varies.

Second, ABR algorithms have historically had a core assumption

that measurements of chunk throughput give them accurate esti-

mates of the available bandwidth of the network [4, 31, 35, 59, 64–

66, 72, 73]. Reducing chunk throughput breaks this assumption, and

could cause an ABR algorithm to select lower qualities—artificially

lowering QoE.

1
Anecdotally, the median Netflix session today has an average throughput 13x higher

than its average bitrate.

In this paper, we present a novel solution to this challenge and

make video traffic smoother. Remarkably, our approach appears

to benefit everyone: we are able to substantially smooth video

traffic while slightly improving QoE relative to existing, finely-

tuned production video streaming systems.

To smooth video traffic, we allow ABR algorithms to directly

limit the packet-by-packet sending rate using a new technique

called application-informed pacing. An ABR algorithm might ask

for a chunk of video to be delivered at no more than one packet per

millisecond, and a congestion control algorithm sends packets no

faster than once every millisecond using TCP Pacing [1, 13, 26, 28,

47, 56, 71]. This allows the ABR algorithm to smooth out throughput

across the full range of timescales: from the level of a few packets,

to an entire chunk, to an entire video session. Application-informed

pacing is described in more detail in Section 3.2.

We next propose Sammy,2 an algorithm that selects both bitrates

and pacing rates to achieve high video QoE and improve smooth-

ness. Sammy is described in Section 4. Our key insight, described

in Section 3.1, is that while ABR algorithms have historically used
measurements of available bandwidth to make their decisions, they

do not need accurate estimates to achieve good QoE.

We implement Sammy at Netflix and evaluate it with large scale,

production experiments in Section 5. Sammy substantially smooths

video traffic: reducing chunk throughput to roughly three times

higher than the highest bitrate of a video. In production experi-

ments, this lowers chunk throughput by 61% at the median. This

improves congestion metrics: improving retransmissions by 35%,

and RTTs by 14%. Surprisingly, Sammy actually slightly improves
video QoE relative to production values despite this reduction in

throughput: improving initial video quality by 0.2%, overall quality

by 0.03%, and play delay by 1.3% while maintaining rebuffers.

We present illustrative lab experiments in Section 6 in which

Sammy improves the performance of neighboring traffic by increas-

ing its throughput and reducing queueing delay. Sammy improves

delay for a neighboring UDP flow by 51%, improves throughput for

a TCP flow by 28%, improves response times for HTTP traffic by

18%, and improves play delay for another video session by 4%.

Streaming video services are incentivized to deploy Sammy. First,

neighboring traffic could easily be from the same video service.

By improving performance for its neighbors, Sammy improves

performance for the video service itself. Second, Sammy forces an

ABR algorithm to be careful about its use of throughput estimates.

This exercise gave us a slight QoE improvement, and could yield

larger improvements for other ABR algorithms.

This work is a first step towards smoothing video traffic. We

conclude in Section 7 by highlighting that there is still more work

to be done. As a community, we have an opportunity to further

smooth traffic, video and beyond. After all, a smoother internet

benefits everyone.

To demonstrate the deployability of Sammy, we have released

an open source prototype [61] which uses off the shelf components

including an unmodified dash.js player and the Fastly CDN.

Ethical considerations: Our experiments involve live traffic

running on a large video streaming service. Sammy makes video

traffic friendlier to its neighbors while improving QoE, so we believe

2
As of this writing, Sammy is the current reigning world’s fastest snail [53].
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our experiments are beneficial. Netflix regularly runs rigorous A/B

testing for every change it makes to its service. Its customers have

the ability to opt out of experiments, if they choose to.

2 BACKGROUND AND RELATEDWORK
The burstiness of video traffic arises from the standard architec-

ture of modern video streaming services. One of the core design

principles of the internet is layering [14], conceptually separating

applications from underlying transport protocols like TCP or QUIC.

The internet community has kept a minimalist inter-layer interface,

giving applications little ability to express their service goals. As a

result, transport protocols optimize for transport-level goals: maxi-

mizing throughput, avoiding congestion, and splitting throughput

fairly. Adaptive bitrate (ABR) algorithms select bitrates to ensure

that viewers get the best quality of experience (QoE) possible, given

whatever throughput is picked by the congestion control algorithm.

In this section, we will give an overview of existing work and

describe why this architecture makes it difficult to achieve our

goal of smoothing video traffic while achieving high QoE. In this

section we focus on the most relevant papers. For a more complete

overview, there are a number of wider surveys [41, 52, 58].

2.1 ABR algorithms
When a network has limited bandwidth, there is a tradeoff between

the three major video QoE metrics: quality, startplay delay, and

rebuffers. A video playback can have both high quality and no

rebuffers if it incurs a high play delay by downloading the entire

video before it starts. It can start quickly in a slow network by

either picking a low quality or rebuffering after playback starts.

The role of an ABR algorithm is to manage this tradeoff between

the different QoE metrics, and ensure that the user gets the best

possible QoE. Note that this does not necessarily mean picking the

highest video quality—in a given network, a very low quality might

significantly reduce rebuffers and have the best QoE.

Videos are split into chunks of a few seconds each. Each chunk

is encoded in a ladder of different bitrates: from a small, low-quality

version to a larger, high-quality version. A video provider will allow

a particular device in a particular network to use some subset of

this ladder based on the user’s plan, device limitations, and other

business policies. The ABR algorithm chooses a rung from this

ladder for each chunk. The transport layer then splits that chunk

into packets and sends each packet to the video client.When chunks

are downloaded, they are added to a playback buffer in the video

client. Even if the network is unavailable, the client can continue

playing as long as there are chunks in the buffer.

When it takes too long to download a chunk, the buffer can

shrink and it may be impossible to maintain high video quality

without rebuffers. To deal with this, ABR algorithms can pick lower

bitrates to grow the buffer and avoid rebuffers. There are two main

types of ABR algorithms in use today:

Throughput-based:AnABR algorithm that takes explicit through-

put measurements from the network, and uses them to select bi-

trates [4, 35, 49, 59, 64, 66, 72, 73]. Typical algorithms produce some

estimate based on chunk throughput, and then use it to optimize

the various QoE metrics. ABR algorithms can also use throughput

in other ways, for example, Oboe [4] switches between several

parameter settings based on throughput measurements. VOXEL

makes modifications to the transport layer to drop video frames in

challenging network conditions. It is generally understood [72, 73]

that throughput-based algorithms will perform better the more

accurately they are able to predict throughput of upcoming chunks.

Buffer-based:AnABR algorithmmay select a bitrate based only

on the buffer level [31, 65]. When the buffer is low, the algorithm

will pick the lowest bitrate. When the buffer is high, it will pick the

highest bitrate. Over time, these algorithms converge to an average

bitrate close to the average chunk throughput. In effect, the buffer

size encodes the past available bandwidth measurements from the

network. In practice, buffer-based algorithms can also include a

throughput-based component during startup [64].

Existing ABR algorithms rely on the available bandwidth mea-

surements produced by congestion control algorithms. By decreas-

ing chunk throughput, we could make existing ABR algorithms

perform worse. We discuss how we address this in Section 3.2.

Until now, ABR algorithms have focused on maximizing the qual-

ity of experience (QoE) for a video streaming client given whatever

throughput is chosen by congestion control algorithms. ABR algo-

rithms do not make choices about throughput. In contrast, our goal

is to design an algorithm that smooths video traffic and achieves

high QoE while improving the internet for neighboring traffic.

2.2 Congestion control
Once an ABR algorithm has selected a chunk, it is the job of con-

gestion control algorithms to decide how fast to send the packets of

that chunk into the network. Congestion control algorithms balance

competing goals: achieving high throughput, avoiding congestion,

and fairly splitting network resources among users [50, Sec. 3.2].

There is a long line of research on congestion control, and we

refer the reader to existing surveys for details [52]. It is challeng-

ing (if not impossible [74, 76]) to simultaneously achieve all the

goals of congestion control, and there are examples of congestion

control algorithms struggling with packet loss and queueing delay,

bufferbloat [24], and unfairness [1, 7, 8, 11, 12, 18, 32, 33, 35, 36, 42,

60, 68–71]. By focusing on the needs of video QoE, Sammy gives

up the goal of achieving high chunk throughput and so is able to

improve congestion and leave more bandwidth available for other

users of the network.

Our work uses the classic idea of TCP Pacing: a mechanism for

adding delay between successive packet sends to reduce the size

of bursts, and reduce packet drops and queueing delay [1, 13, 26,

28, 47, 56, 71]. Pacing gives packets a constant interarrival time,

which theoretically minimizes queueing delay in general settings

[27]. In practice, pacing reduces congestion [1, 47, 71]. Typically

the time between successive packets is set to a value larger than

the cwnd/RTT [1, 67], which reduces burstiness at the packet-level,

but does not reduce chunk throughput. BBR [13] is a congestion

control algorithm that directly adjusts the pace rate, but it aims to

pace close to the bottleneck capacity while Sammy aims to pace

significantly lower.

There has been prior work on congestion control to improve

fairness among competing video clients. There are “scavenger” con-

gestion control algorithms like LEDBAT [55] and PCC Proteus [46],

that give up throughput when competing with a non-scavenger
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Paper Main Goal Smoothing Mechanism Eval. Preserves QoE? Smooths below avail. bandwidth?
Our work Smoothness ABR-informed Pacing Prod. ✓ ✓

TCP Pacing [1] Packet bursts Pacing Prod. ✓ ✗

Trickle baseline [25] Wasted buffer Token Bucket ? ? ✓

Trickle [25] Packet bursts CWND limit Prod. ? ✓

[59] Wasted buffer Delays TTFB Lab ✗ ✗

SABRE #1 [44] Bufferbloat RWND limit Lab ✗ ✓

SABRE #2 [44] Bufferbloat RWND limit Lab ✗ ✓

[3] Video fairness Token Bucket Lab ✗ ✓

[9] Video fairness Token Bucket Lab ✗ ✗

Table 1: Related work on smoothing video traffic either does not preserve QoE or does not reduce throughput below the available
network bandwidth.

congestion control algorithm. These were originally designed to

reduce the impact of BitTorrent traffic on other internet traffic [55],

but the PCC Proteus [46] authors describe a hybrid mode, in which

video traffic switches from non-scavenger to scavenger mode when

the throughput exceeds a threshold. The authors show that this

improves performance when multiple video clients compete. Min-

erva [48] improves fairness between competing video sessions by

sharing proportionally based on a measure of perceptual quality.

These approaches will fully utilize the network when no neighbor-

ing traffic is present. In contrast, Sammy does not focus on fairness

and instead consistently sends at a rate closer to the video bitrate.

Surprisingly, we show that consistently smoothing (even when

neighboring traffic is not present) achieves similar performance to

fully utilizing the network.

2.3 Reducing Burstiness for Video Traffic
There has been priorwork on reducing the burstiness of video traffic.

The novelty of our work is that by designing a joint ABR and rate

limiting algorithm, we are able to reduce chunk throughput below

the available bandwidth of a network while achieving comparable
QoE to today’s top ABR algorithms.

Related work on reducing video burstiness is summarized in

Table 1. There are a number of differences to our work. The base-

line algorithm described in Trickle [25] reduces chunk throughput

based on the video encoding rate with the goal of reducing wasted

buffers when videos end early. The impact of this algorithm on QoE,

smoothness, or neighboring traffic is not evaluated in the paper but

since algorithm reduces buffer sizes it likely has some impact on

QoE. In contrast, our work explores how to design an ABR algo-

rithm to improve smoothness while achieving high QoE. Work on

pacing like TCP Pacing [1] and Trickle (relative to their baseline)

[25] focuses on reducing per-packet burstiness while maintaining

congestion control-selected throughput. There is work [3, 44, 59]

which reduces throughput below a congestion control algorithm’s

selected rate using mechanisms other than pacing, but this work

does not preserve video QoE (typically because it treats ABR algo-

rithms as a black box). Finally, there is some related work [9, 43]

which delays the time to first byte (TTFB) of the HTTP response.

This reduces buffer sizes, but does not improve smoothness over

typical congestion control algorithms.

There has also been prior measurement work, observing that

some video traffic reduces burstiness in practice using some of the

mechanisms described above [5, 54].

Our work has some similarity to real-time video streaming sys-

tems (like FaceTime and Zoom), that are designed differently than

on-demand systems (like Netflix and YouTube). These systems also

need to pick bitrates and sending rates for videos. To pick bitrates,

real-time systems pick an encoding bitrate for each frame, while

on-demand systems pick bitrates from an offline-chosen ladder.

Real-time systems are built on top of UDP and so need to decide

when to send each packet, while on-demand systems have histor-

ically relied on congestion control algorithms. Because of these

differences, real-time systems have less of a distinction between

congestion control and bitrate adaptation schemes. For instance,

the Google Congestion Control algorithm [29] for WebRTC picks

sending rates using a delay-based algorithm and aims to match the

encoding bitrate to the sending rate. Salsify [23] relies on packet-

pair techniques, adjusts its sending rates to control queuing delay,

and picks bitrates based on the chosen sending rates. In contrast,

our work focuses on making on-demand systems friendlier while

achieving comparable QoE to today’s top on-demand systems.

2.3.1 The challenge of reducing burstiness with existing ABR
algorithms. All prior work on reducing burstiness for video traffic

falls short of achieving high video QoE because they treat ABR

algorithms as a black box.

Today’s ABR algorithms are designed to use either explicit mea-

surements of available bandwidth (as in the case of throughput-

based ABR algorithms) or implicit ones collected through the ac-

cumulation of a buffer (as with a buffer-based algorithm). If we

reduce burstiness by reducing throughput, this changes available

bandwidth and can easily cause ABR algorithms to select lower

bitrates and reduce QoE.

As an example of how reducing chunk throughput can cause

QoE issues, imagine a simple ABR algorithm which measures the

minimum throughput 𝑥 over the last few chunks and picks the

highest video bitrate < 𝑐𝑥 for some constant 𝑐 .3 Say we set 𝑐 = 0.5,

and picked a pacing rate of 1.5x the video bitrate. This would cause

a downward spiral [30]: we would start with video bitrate B, pick a

pacing rate of 1.5 · 𝐵, and measure a throughput of 𝑥 = 1.5 · 𝐵. We

would then pick the highest video bitrate lower than 0.5 · (1.5 ·𝐵) =
3
This is the default dash.js algorithm when the buffer is low [64].
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0.75 · 𝐵, and would switch down. We would continue switching

down until we reached the lowest bitrate. This example shows that

we cannot treat ABR algorithms as a black box when reducing

burstiness and maintain the same QoE.

As another example, imagine all chunks are one second long,

and we pick a pace rate equal to the chunk bitrate. The chunk will

download in exactly the same amount of time as it takes to play,

one second. As a result, the playback buffer will not increase and

remain at a near-zero level. If chunk throughput varied at all, there

would be a rebuffer. For buffer-based algorithms, this also means

that the buffer will not grow large enough to select a high bitrate

chunk, reducing video quality. Note that picking a pace rate equal to

or even lower than the chunk bitrate may be an effective approach.

If the video buffer is relatively large, it may be desirable to give

up some buffer growth to improve smoothness. By pacing at the

chunk bitrate, the buffer can be kept at the same relatively high

level. By pacing slightly below the chunk bitrate, video traffic can

be made even smoother while only slightly shrinking the buffer.

3 DESIGN DISCUSSION
In this section, we will describe the key components of Sammy:

the key idea behind designing an ABR algorithm for pacing, and

the application-informed pacing mechanism Sammy uses to limit

throughput. In Section 4, we will use these components when in-

troducing Sammy.

3.1 ABR algorithms with paced throughput
Application-informed pacing reduces throughput below the avail-

able bandwidth of the network. With pacing, an ABR algorithm

might never learn the available bandwidth of a network. As dis-

cussed in Section 2, existing ABR algorithms rely on measurements

of available bandwidth. So how can an ABR algorithm optimize

QoE with pacing?

The main idea behind our approach is that while ABR algorithms

have historically used estimates of available bandwidth to make

their decisions, they do not need accurate available bandwidth

estimates to achieve good QoE. An ABR algorithm only needs to

know whether the network can support the highest bitrate, or if it

needs to reduce video quality to improve QoE.

For example, imagine streaming a video with a top bitrate of

10 Mbps. Once we have built up a small playback buffer, the ABR

algorithm only needs to know whether the network throughput is

high enough to sustain the top bitrate without rebuffering. If the

available bandwidth is 100 Mbps or 1000 Mbps, a good algorithm

would still pick the top bitrate.

Instead of relying on accurate estimates of available bandwidth,

Sammy can use a pacing-informed ABR algorithm that instead

solves a decision problem: is the available bandwidth of the network
enough to pick a bitrate, or not? As we discuss in Section 4.2, many

commonly used ABR algorithms implicitly rely on such a decision

problem and do not need accurate estimates of available bandwidth.

An alternate approach would be to estimate available bandwidth

despite pacing, for instance using packet pair techniques [37, 39],

or not pacing some portion of requests. We did not pursue this, in

favor of an approach that avoids exact throughput estimation in

the first place.

3.2 Limiting throughput with
application-informed pacing

Streaming video traffic is bursty because congestion control algo-

rithms send as fast as the available network bandwidth, which is

often higher than needed for good QoE. Our approach is to have the

ABR algorithm reduce the server’s sending rate with application-
informed pacing: a new technique that allows applications to set

an upper limit on the server’s sending rate. By carefully limiting

bursts, an ABR algorithm can reduce chunk throughput below the

available network bandwidth while achieving high QoE.

In application-informed pacing, the ABR algorithm selects a

pace rate and sends this rate to the server via an HTTP header. The

server uses TCP Pacing as described in Section 2 and [1, 28, 71] to

limit the sending rate at the server side. To achieve a desired rate of

𝑅 packets per second, the server delays sending packets to ensure

that there is a delay of at least 1/𝑅 seconds between the starts of

successive packets.

Application-informed pacing runs in combination with a con-

gestion control algorithm, and the pace rate is an upper limit on

the sending rate. Congestion control algorithms can still limit the

sending rate by reducing the congestion window or pace rate. If an

application requests a pace rate higher than network bandwidth,

congestion control algorithms will operate as normal and pick a

lower sending rate. Because the resulting throughput is at most the
requested pace rate, Application-informed pacing is TCP-fair to

existing internet traffic.

Deployability. Application-informed pacing is readily deploy-

able. TCP Pacing is already part of the Linux kernel [19], is used in

production at Google [13, 47, 56], and is available in certain NICs

[56]. In Linux, an HTTP server can implement application-informed

pacing by setting the SO_MAX_PACING_RATE socket option [20]

to an application-provided value.

There is CDN support for application-informed pacing. Aka-

mai supports CMCD, a video standard that allows clients to limit

server-side throughput using the rtp parameter [2, 6]. Fastly al-

lows setting TCP pace rates based on the value of an HTTP header

[22].

Application-informed pacing is an example of cross-layer design,

and there are lots of other ways to limit a server’s throughput. A

system could use client receive windows to limit throughput [44],

could limit a server’s congestion window [25], or could use a server-

side token bucket to reduce rates [3]. These techniques might be

more bursty than application-informed pacing, but might be more

easily deployable in certain settings.

4 SAMMY
Wewill now describe Sammy, our system that jointly selects bitrates

and pace rates to smooth out video traffic while ensuring high QoE.

In a significant shift from conventional video streaming systems,

Sammy’s primary mechanism for throughput selection is pace rate

selection by the ABR algorithm, with congestion control acting

as a backup to ensure TCP-fairness to existing systems. Sammy

selects pace rates using information from the ABR algorithm, like

buffer level and player state. To select video bitrates, Sammy relies

on a pacing-aware ABR algorithm which ensures high QoE even

without accurate estimates of available bandwidth. One of our
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main contributions is showing that a wide range of existing ABR

algorithms already do not require precise estimates of available

bandwidth for high QoE.

Sammy is divided into two distinct algorithms: one for the initial

phase (before playback starts), and one for the playing phase. This

division follows naturally from the different QoE goals of each

phase. During the initial phase, it is important to start playback

quickly. After playback starts, there can be no change to play de-

lay and the QoE goal shifts towards avoiding rebuffers with high

quality.

4.1 Algorithm for the Initial Phase
The initial phase of a video is the time period between when a

user initiates playback and the playback actually starts. During this

phase, ABR algorithms download chunks to build up a small buffer

before beginning playback. Sammy has four competing QoE goals

in this phase:

(1) High initial quality: Sammy should pick high bitrates for

the first few chunks of video playback.

(2) Few rebuffers: Sammy should build up a sufficiently large

buffer before playback starts to avoid rebuffers.

(3) Low play delay: Sammy should begin playback as quickly

as possible.

(4) Smoothness: Sammy should smooth out traffic by picking

low pace rates.

In the initial phase, we will not aim to improve smoothness and will

allow conventional congestion control algorithms to pick chunk

throughput. If we reduce chunk throughput with the same initial

quality and starting buffer size, we will be downloading the same

number of bytes in a longer period of time and potentially increase

play delay. The initial phase is a small fraction of traffic (typically a

few seconds over a tens of minutes long session), so not pacing has

a minor impact on overall smoothness.

The challenge in the initial phase is making bitrate selections

with relatively few throughput measurements. ABR algorithms

typically deal with this challenge by using historical throughput

from the playing phase of previous sessions [34, 66]. But if Sammy

reduces chunk throughput in the playing phase of previous sessions,

this can change these estimates and result in lower initial quality

(as shown in experiments in Section 5.5).

In the initial phase, Sammy requires an ABR algorithm whose

initial bitrate selections are not affected by the throughput from the

playing phase of other sessions. This can be accomplished in many

ways. For an existing ABR algorithm that uses historical throughput

estimates, we add separate initial throughput estimates and update

these estimates only with throughput from the initial phase. For

separate systems that predict initial throughput like CS2P [66], this

can be done by supplying this system only with initial throughput

measurements. Other ABR algorithmmay need no modification, for

instance an ABR algorithm which always selects the lowest quality

for the first chunk, or Puffer [72] which uses statistics about the

establishment of a TCP connection to estimate initial throughput.

In our experiments in Section 5, we record historical throughput

measurements from only the initial phases of previous sessions on

the same device and use them to select the initial bitrate. Sammy

uses these estimates with Netflix’s existing bitrate selection al-

gorithm for the initial phase. This is described in pseudocode in

Algorithm 1.

4.2 Algorithm for the Playing phase
During the playing phase, Sammy selects both a bitrate and a pace

rate to balance three competing QoE goals:

(1) High quality: Sammy should pick high video bitrates.

(2) Few rebuffers: Sammy should avoid playback interruptions

by keeping the buffer above zero.

(3) Smoothness: Sammy should smooth out traffic by picking

low pace rates.

Picking a lower pace rate can affect all three goals: it improves

smoothness, reduces throughput estimates (potentially impacting

video quality), and causes buffers to grow more slowly (potentially

impacting rebuffers).

4.2.1 Sammy’s conceptual design. Sammy includes two main

components in the playing phase: an ABR algorithm and a pace rate

selection algorithm. Our overall strategy for the playing phase will

be to take a given ABR algorithm and reduce chunk throughputs

as much as possible without impacting bitrate selection. If an ABR

algorithm picks the same sequence of bitrates with and without

pacing, Sammy will achieve the same video quality with and with-

out pacing. Achieving the same QoE with and without pacing is

then just a matter of ensuring that the buffer is large enough to

prevent rebuffers.

Instead of proposing a single new ABR algorithm, we will de-

scribe how to analyze a class of pacing-aware ABR algorithms to

understand how much throughput can be reduced without impact-

ing QoE. We then use a buffer-based algorithm [31] to pick high

pace rates when the buffer is low (growing the buffer more quickly)

and lower pace rates when the buffer is high (growing the buffer

more slowly), while ensuring that the pace rates stay above the

minimum required throughput from our analysis. This approach

ensures that Sammy is easily deployable in existing, large-scale

video streaming services. Surprisingly, we show that throughput

can be significantly lower without impacting QoE for existing ABR

algorithms.

Pacing-aware ABR algorithms: As discussed in Section 3.1,

instead of relying on an ABR algorithm which accurately estimates
available bandwidth, Sammy will use a pacing-aware ABR algo-

rithm that relies on a decision problem: is the available bandwidth
high enough to pick a bitrate, or not? This decision problem gives

us a threshold throughput—a minimum value of the algorithm’s

throughput estimate that will cause it to pick the same bitrate. This

threshold gives Sammy room to decrease throughput via pacing.

As long as throughput estimates stay above this threshold, Sammy

can decrease chunk throughput without changing bitrate decisions.

Fortunately, many existing ABR algorithms already implicitly

use such a decision problem. As an example, consider a typical

throughput-based algorithm: theHYB algorithm [4], modified to use

lookahead (i.e. take upcoming chunk sizes into consideration). This

analysis also applies to MPC algorithms [73] with appropriately

chosen utility functions, ABR algorithms without lookahead, and

so on. The HYB algorithm computes a throughput estimate from

recent throughput measurements, and multiplies this estimate by
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(a) HYB picks higher bitrates as the buffer grows. (b) HYB has a minimum throughput needed to select a chunk.

Figure 2: By analyzing how an example throughput-based ABR algorithm (HYB) picks bitrates as a function of chunk throughput
estimates (a), we can find a lower bound on pace rates to avoid impacting QoE (b). For example, to pick a bitrate with an empty
buffer, HYB requires a throughput at least 1/𝛽 times higher than that bitrate.

a parameter 𝛽 ∈ [0, 1] to offset prediction errors. It then uses a

standard buffer update equation [30] to predict how the buffer

evolves over the lookahead duration. It picks the highest bitrate

which keeps the buffer above zero.

To better understand the behavior of this algorithm, in Appen-

dix A we analyze how the playback buffer evolves over time. Let

𝐷𝑇 be the lookahead duration of the upcoming𝑇 chunks. We show

that for a throughput 𝑥 , bitrate 𝑟 , and starting buffer size 𝐵0, the

buffer evolves according to

𝐵𝑇 = 𝐵0 + 𝐷𝑇 − 𝐷𝑇
𝑟

𝛽𝑥
.

HYB picks the highest bitrate which keeps 𝐵𝑇 > 0, which gives us

the following constraint on the bitrate 𝑟 :

𝑟 ≤ 𝛽𝑥

(
1 + 𝐵0

𝐷𝑇

)
.

This function is shown in Figure 2a: as buffer size and throughput

grows, HYB will pick higher bitrates
4
.

As a corollary, this gives us a minimum throughput required to

pick a bitrate 𝑟 .

𝑥 ≥ 𝑟𝛽−1

(
1 + 𝐵0

𝐷𝑇

)−1

. (1)

We graph this function in Figure 2b: when the buffer is empty,

HYB needs an estimate of throughput equal to the bitrate divided

by 𝛽 . For example, if 𝛽 = 0.5 and the buffer is empty, HYB will

pick a bitrate provided the throughput is at least twice the bitrate.

When the buffer is lower, HYB can select a bitrate with a lower

throughput.

Equation 1 is the implicit function HYB uses to decide whether

or not throughput is high enough to select a bitrate. In order to

avoid impacting bitrate selection, we must pick a pace rate higher

than this value. When the buffer is empty, we must pick a pace rate

of at least 1/𝛽 times the top bitrate. When the buffer is larger, we

can pick a lower pace rate without impacting bitrate selection.

4
Previous research on ABR (e.g. [31]) has made a distinction between throughput-

based and buffer-based algorithms. Interestingly, this analysis shows that while the

description of HYB seems to be a classic throughput-based algorithm, implicitly it uses

a buffer-based approach to select bitrates.

Sammy’s pace-rate selection. Videos are encoded into a ladder
of bitrates. Sammy takes the highest bitrate in this ladder, call this

value 𝑟 . When the buffer is empty, Sammy paces at a multiple of

highest bitrate, e.g. at a rate of 𝑐0 · 𝑟 for some constant 𝑐0. When

the buffer is full, Sammy paces at a different multiple of the highest

bitrate, e.g. at a rate of 𝑐1 · 𝑟 for some constant 𝑐1. We set the

parameters 𝑐0, 𝑐1 so that the resulting pace rate is always above the

minimum throughput required to pick the highest bitrate given by

Equation (1) and Figure 2. We can choose higher parameter values

than this to tune the tradeoff between rebuffers and pace rates.

Once Sammy selects a pace rate, it communicates this rate to the

transport layer using application-informed pacing, as discussed in

Section 3.2.

4.3 Sammy’s implementation
In the first part of the section, we have presented a more generic

version of Sammy that works with a variety of pacing-aware ABR

algorithms. Here we describe the specific implementation of Sammy

we use for experiments in Section 5. Sammy uses Netflix’s produc-

tion ABR algorithm, which is an MPC-style algorithm. This is a

proprietary algorithm and we cannot describe it in detail.

During the playing phase, we use Netflix’s production ABR al-

gorithm without modification. During the initial phase, we record

a separate set of historical initial throughput measurements and

use these measurements in place of Netflix’s existing historical

throughput measurements. The distribution of initial throughput

is slightly different than Netflix’s existing measurements, and so

accordingly we retune Netflix’s initial bitrate selection logic to

use these measurements without decreasing QoE. We present the

results of experiments with just these changes in Section 5.7.

Algorithm 1 summarizes Sammy’s implementation. To demon-

strate the deployability of Sammy and showhow its different compo-

nents work in practice, we have released an open source prototype

[61] of Sammy’s playing phase. Our prototype uses off the shelf

components including an unmodified dash.js player and the Fastly

CDN. Our prototype likely decreases QoE relative to the production

dash.js implementation (e.g. the parameters are untuned and we
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make no modifications to dash.js’s initial bitrate selection), and we

leave achieving QoE parity as an exercise to the interested reader.

Algorithm 1 Sammy’s bitrate and pace rate selection

Require: ABR algorithm, parameters 𝑐0, 𝑐1 ≥ 0

if ABR is in initial phase then
bitrate← ABR select(initial throughput measurements)
pace rate← no pacing

else
bitrate← ABR select(all throughput measurements)
𝐵 ← buffer/max buffer

multiplier← 𝑐1 · 𝐵 + 𝑐0 · (1 − 𝐵)
highest bitrate← max

bitrate∈ladder bitrate
pace rate← multiplier · highest bitrate

end if
return bitrate, pace rate

5 PRODUCTION EVALUATION
We implemented and evaluated Sammy on TV devices (TVs, set-top

boxes, game consoles, etc...) in production at Netflix. To evaluate

its performance, we ran a series of A/B tests [62, 72] to tune our

algorithm and understand the tradeoffs between video QoE and

congestion-related metrics. We compared Sammy to Netflix’s exist-

ing extensively tested and finely-tuned production algorithm, to

emphasize how Sammy can improve smoothness while maintaining

or improving QoE.

Each A/B test consisted of a control group running Netflix’s

production algorithm, and twenty treatment groups with different

settings of Sammy’s parameters. We randomly picked a small frac-

tion of Netflix’s users and randomly assigned them to either control

or one of the treatment groups. This resulted in a small fraction of

Netflix’s video sessions (< 1%). We ran the tests for about a week,

and measured the values of video- and transport-level metrics for

each session. Here we present the results of three experiments.

Over all the sessions included in these experiment, Netflix’s users

watched on the order of thousands of years of video.
The experimental results show that Sammy significantly im-

proves smoothness and reduces congestion-related metrics while

slightly improving video QoE.

Parameter values: We will present results for a single set of

parameters for Sammy throughout the rest of the paper, and we

briefly discuss other parameter values in Section 5.3. Specifically,

Sammy paces at 3.2x the maximum bitrate when the buffer is empty,

and 2.8x the maximum bitrate when the buffer is full using the

algorithm described in Section 4.2.

As discussed in Section 4.1, Sammy also includes changes to

initial throughput estimation. We present the results of these initial

changes (without pacing) in Section 5.4.

5.1 Sammy reduces congestion
We first show that Sammy significantly improves smoothness, re-

transmissions, and round-trip times of Netflix traffic compared to

the existing production algorithm. Table 2 presents the percent

changes between Sammy and Netflix’s production algorithm with

95% confidence intervals.

Type Metric % Chg. 95% CI
Congestion Chunk Throughput -61.0 [-61.8, -60.2]

% Retransmits -35.5 [-37.8, -33.4]

RTT -13.7 [-16.4, -12.3]

QoE Initial VMAF 0.14 [0.1, 0.2]

VMAF 0.04 [0.0, 0.1]

Play Delay -1.29 [-2.0, -0.6]

Rebuffers (% sess) – [-7.1, 4.0]

Rebuffers (/ hr) – [-17.1, 3.6]

Table 2: A/B Test results for Sammy including the percentage
change to control and confidence intervals. All statistically
significant metric movements are improvements over Net-
flix’s production algorithm.

Figure 3: Reduction in chunk throughput (95% CI) split by
each user’s pre-experiment chunk throughput. Sammy re-
duces burstiness for users with pre-experiment throughput
> 6 Mbps.

Improving smoothness:Tomeasure howmuch Sammy smooths

video traffic, we focus on the average chunk throughput (the through-
put during “on” periods). Video clients report the average through-

put for all chunk downloads in a session, weighted by download

time as in Appendix A.We calculate the median of these per-session

average chunk throughputs for both Netflix’s production algorithm

and Sammy. Sammy reduces chunk throughput by 61%. Sammy

does not reduce quality, so reducing chunk throughput causes on

periods to become longer, and increases the available bandwidth

for neighboring traffic during on periods.

Sammy’s ability to reduce throughput depends on how much

higher network bandwidth is relative to maximum bitrates. This

raises the question about how Sammy performs in slower networks.

For all users in the A/B test, we computed their pre-experiment

throughput by looking at the 95th percentile of their chunk through-

put for the week before the test began. We grouped users by the

range of pre-experiment throughput: <6 Mbps, 6-15 Mbps, 15-30

Mbps, 30-90 Mbps, and > 90 Mbps. We calculated average chunk

throughput within each group of users, and compared Sammy’s

throughput of each group to that of the production algorithm. Fig-

ure 3 shows the percent change in throughput as a function of pre-

experiment throughput. For users with pre-experiment throughput

of more than 90 Mbps, Sammy reduces chunk throughput by 74%.
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As pre-experiment throughput decreases, Sammy reduces chunk

throughput less. But Sammy does significantly reduce throughput

(improving smoothness) for all pre-experiment throughputs more

than 6 Mbps.

Reducing network congestion: Intuitively, reducing chunk

throughput and improving smoothness should translate into im-

provements in congestion-related metrics, specifically lower packet

retransmission rates and round-trip times (RTTs). This is supported

by our A/B test results.

We calculate the fraction of retransmitted bytes over all bytes

sent by TCP for each session. Sammy improves the median fraction

of retransmitted bytes over all sessions by 36%. We measure RTTs

for each packet sent by TCP and store them for each TCP connection

in a t-digest [21].Wemerge the t-digests for all TCP connections in a

session, and estimate the median RTT for the session. We measure

the median of median RTTs over all sessions. Sammy improves

RTTs by 14%.

Given Sammy reduces chunk throughput, improves smoothness,

and reduces congestion for Netflix traffic, it is plausible that neigh-

boring traffic sharing a bottleneck link with Netflix’s traffic should

see improvements as well. Section 6 shows in a lab setting that

Sammy’s improvements in congestion-related metrics can translate

to QoE improvements for neighboring traffic.

5.2 Sammy improves QoE
It is not surprising that picking lower pace rates would improve

smoothness and network congestion, but more surprisingly, we

show this can be done at no cost to the video user experience. In

our experiments, Sammy slightly improves QoE. These results are
summarized in Table 2.

Improving quality and play delay: We measure video quality

by Video Multi-method Assessment Fusion (VMAF) [10], a method

for estimating a viewer’s perception of a video’s visual quality. We

calculate a time-weighted average of VMAF to get a score for each

session, and measure the median score over all sessions. Sammy

slightly increases overall VMAF, which is driven primarily by an

increase in initial VMAF (the VMAF during the first twenty seconds

of video playback). In other words, Sammy’s video quality is slightly

higher than with Netflix’s production algorithm.

We note that this is a very minor improvement to VMAF. It is

a statistically significant improvement in our experiments, but it

is a small and potentially imperceptible improvement. The more

important point is that Sammy maintains a QoE that is at least on

par to Netflix’s existing, finely-tuned production algorithm, with

more than 60% lower per-chunk throughput.

Sammy also slightly improves play delay by about 1.3%. This may

seem surprising since we do not do any pacing in the initial part of

the section. As we show in Section 5.4, the improvements to QoE

(play delay included) come primarily from using only estimates of

initial throughput during the initial phase.

Maintaining rebuffers: Sammy has no statistically significant

impact on any other aspect of QoE. There is no significant change

in rebuffers: both the fraction of sessions that have at least one

rebuffer, and the number of rebuffers per hour streamed.

Figure 4: Change in retransmissions as a function of the
pacing burst size in a production A/B test. Lower burst sizes
improve retransmissions.

Figure 5: Tradeoff between video quality (VMAF) and chunk
throughput for different choices of parameters.

5.3 Tradeoffs and parameter settings
Sammy has a number of parameters that can be tuned, including

parameters for pace rate selection and for the chosenABR algorithm.

We used Ax [51] to search the parameter space and find a Pareto

improvement to all metrics of interest across multiple rounds of

A/B testing.

Different parameter settings allow us to trade off between chunk

throughput and quality, as shown in Figure 5. Each point represents

one treatment group in an A/B test, each with a different value of

parameter settings. The x-axis is the % change in chunk through-

put for that group, and the y-axis is the % change in VMAF. The

parameters we selected reduced chunk throughput by 61% rela-

tive to control, while increasing VMAF by 0.04%. Other parameter

settings give other points on this tradeoff. Eventually, decreasing

throughput results in a decrease in VMAF.

5.4 QoE differences are primarily from initial
phase

Sammy includes two sets of changes over Netflix’s production ABR

algorithm: reducing chunk throughput using pacing, and changes

to the initial phase including using estimates of initial throughput

and retuning Netflix’s initial bitrate selection logic. Here we report

on the results of an A/B test including only the changes to the initial

phase, and not pacing.
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Metric % Chg. 95% CI
Initial VMAF 0.30 [0.28,0.35]

VMAF – [-1.8e-5, 1.7e-4]

Play Delay -0.40 [-0.7, -0.1]

Rebuffers (% sess) – [-1.6,1.8]

Rebuffers (/ hr) – [-3.1,4.2]

Table 3: A/B Test results for Sammy’s changes to initial
throughput estimation and bitrate selection. All statistically
significant metric movements are improvements over Net-
flix’s production algorithm.

In this A/B test, there was a slight improvement in initial VMAF

of about 0.3%, in play delay of about 0.4%, and in no other metrics.

These results are run as a separate A/B test, and so shouldn’t be

directly compared to the results of Sammy in Table 2. But the

direction of improvement and magnitude is similar in the two tests.

These results, plus our intuition that pacing late in the session

should not impact the initial phase (including initial VMAF and

play delay), suggests that Sammy’s QoE improvements do not come

from pacing. Instead, the results suggest that the improvements

come primarily from the changes to initial bitrate selection.

5.5 A baseline approach reduces QoE
Sammy works hard to avoid reducing QoE with pacing, and a

natural question is whether this work is necessary. Why not just

pick a pace rate a bit higher than the maximum bitrate and call

it a day? We ran an experiment which shows that this approach

underperforms Sammy in all of our goals.

We ran an experimentwith the productionNetflix ABR algorithm

in which we limited the pacing rate for each chunk (including in

the initial phase) to 4x the maximum bitrate. We made no other

changes. Pacing in this way reduced chunk throughput by 53% and

we observed a degradation in most of the major components of

video QoE: play delay increased by 6%, and VMAF decreased by

0.2%. The play delay increase was enough to reduce the overall level

of streaming, causing the experiment to be automatically stopped

by safety systems.

Sammy outperforms this approach in both congestion and QoE-

relatedmetrics. Sammy achieves a higher reduction in chunk through-
put of 61% while improving QoE. If we instead chose parameters

from Figure 5 which reduced QoE, Sammy would achieve a higher

throughput reduction of more than 80% for a much lower VMAF

reduction of 0.07%.

5.6 Effect of burst size
With pacing, there is an option of how large a burst to send at a time.

To pace at 12 Mbps with 1500 byte MTU, we could send one packet

every 1 ms, two packets every 2 ms, or 10 packets every 10ms,

and so on. Intuitively, there is a tradeoff in picking the burst size:

smaller bursts should improve congestion-related metrics, but also

reduce opportunities for segmentation offload which can increase

CPU usage.

Netflix’s TCP implementation’s default behaviour is to limit

line-rate bursts to no more than 40 packets at a time. We ran an

Figure 6: Initial quality difference over time during an A/B
test. The treatment algorithm is missing historical data at
the beginning of the experiment, and so performs worse over
the entire experiment.

experiment where we paced at a constant 2x the maximum bitrate,

and adjusted the per-packet bursts from 4 packets up to 40 packets.

Figure 4 shows the results of this experiment.

Pacing with a burst size of 40 packets corresponds to only re-

ducing chunk throughput, and not reducing the maximum possible

size of per-packet bursts. This reduces retransmissions by 40% rela-

tive to not pacing. As the maximum burst size decreases, retrans-

mits reduce by up to 60% relative to not pacing. But as the burst

size decreases, there is no statistically difference in either chunk

throughput or video QoE metrics.

This result shows why it is beneficial to use TCP Pacing instead

of capping the congestion window as in prior work [25]. In our

experiments, we use a burst size of 4 packets for CPU efficiency.

By reducing the burst size from 40 (as it would be if we capped the

congestion window) to a burst size of 4, we improve retransmissions

by an additional 20%.

5.7 Effect of historical data
As described in Section 4.1, Sammy and prior work use historical

throughput measurements for initial bitrate selection. Doing so

creates a dependency between successive sessions: the throughput

at the beginning of one session impacts the bitrate selection deci-

sions at the beginning of the next. Using historical data improves

performance, but the dependency creates challenges for evaluation.

As an example, we ran an experiment simulating introducing

a new historical estimate. The treatment group started with no

historical measurements, while the control group had historical

measurements. Both groups updated historical throughput with the

same estimates, and there were no other differences between the

groups. Figure 6 shows the percent difference in initial quality over

the course of the experiment. The treatment group started with

much lower initial quality and surprisingly it stayed lower over the

course of the experiment. It took a week for the initial quality of

the treatment group to reach its closest point to the control group.

To deal with this challenge, we reset historical throughput infor-

mation in both treatment and control groups in all experiments to

enable an “apples-to-apples” comparison between the two.
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Figure 7: Throughput and RTT for a single Sammy flow running in a lab environment compared to Netflix’s production
algorithm. After 3 seconds, Sammy reduces chunk throughput enough to avoid congesting the link. Reducing chunk throughput
helps it avoid on-off periods beginning for control traffic around 25 seconds.

(a) Neighboring UDP traffic (b) Neighboring TCP traffic (c) Neighboring HTTP traffic (d) Neighboring video traffic

Figure 8: In the lab, Sammy improves QoE for neighboring traffic relative to control for (a) UDP one-way delay, (b) TCP
throughput, (c) HTTP response time, and (d) video play delay.

6 IMPROVING QOE OF NEIGHBORS
In this section, we will present lab experiments where we mea-

sure how Sammy improves the QoE of neighboring traffic. The

previous section shows how Sammy reduces chunk throughput and

congestion-related metrics at scale. Lab experiments with a single

setting are clearly not representative of most traffic on the internet,

so the goal of these experiments is to illustrate how Sammy can

improve the QoE of a few neighbors that might share its bottleneck.

Without Sammy, the video traffic fully utilizes the link and fills up

the queue, in turn impacting neighboring traffic. Sammy smooths

out traffic, and chunk throughput drops to below half the network

capacity. This behavior avoids congesting the link (reducing queue-

ing delay for neighboring traffic), and gives neighboring traffic

more bandwidth to use for itself.

Experiment setup. In all experiments, we use a 40 Mbps link

with a 5ms RTT, and a queue size of 4 times the bandwidth-delay

product. Sammy plays a video with a maximum bitrate of 3.3 Mbps.

We run an experiment where a video session using Netflix’s produc-

tion algorithm runs at the same time as a neighboring application.

We repeat the same experiment using Sammy and observe how the

neighbor’s QoE changes.

Sammy on its own. To understand how Sammy improves per-

formance for neighboring traffic, we will first look at how it per-

forms on its own. Figure 7 shows the throughput and RTT for

a single Sammy flow, compared to a single control flow running

Netflix’s production ABR algorithm.

At the beginning of the session, both Sammy and control send as

fast as possible during the initial phase: fully utilizing the network

and filling up the queue. Playback starts after about three seconds,

at which point Sammy begins pacing. The pace rate it picks is about

15Mbps—low enough to avoid congesting the link, so queuing delay

goes to zero and the RTT is the minimum of 5ms. Over the rest of

the session, Sammy decreases the throughput to about 13 Mbps—

below its TCP-fair share rate of 20 Mbps when it shares a link with

neighboring traffic.

The change inmetrics for this session is comparable to the overall

change in metrics for the A/B test in Section 5. For this session

Sammy reduces throughput by 53% (slightly less than in the A/B

test) and RTTs by 47% (about four times more than the A/B test).

Note that in the A/B test, Sammy shares networks with neighboring

traffic running typical congestion control algorithms that keep

queues full. It is possible that if the neighboring traffic instead used

Sammy, the congestion reduction could be even larger [62].

When neighboring traffic shares this particular network with

Sammy, it will experience an extra 5 Mbps of available bandwidth

and no additional queueing delay. This leads to the following bene-

fits (shown in Figure 8):

UDP: We first run an experiment where the neighboring traffic

is a 5 Mbps paced UDP flow. The one-way delay measured for UDP

packets is shown in Figure 8a. Sammy eliminates queueing delay

for the UDP traffic, reducing the one-way delay by 51%. Without

Sammy, video traffic keeps the queue full (see Figure 7) and the

UDP traffic experiences queueing delay. Sammy sends no faster
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than 15 Mbps during playback, so the queue stays empty even with

5 Mbps of UDP traffic.

TCP: We next run an experiment where the neighboring traffic

is a standard, congestion window limited TCP Reno connection

(the congestion control algorithm Netflix uses by default). The TCP

connection begins 10 seconds after playback starts. Its throughput is

shown in Figure 8b. Without Sammy, the TCP flow gets an average

of 20 Mbps (its TCP-fair share of throughput). Sammy increases

throughput for the TCP flow by 28% to an average of 25.7 Mbps. Any

other congestion control algorithms that splits bandwidth equally

without Sammy and fully utilizes the link with Sammy would have

similar results.

HTTP:The next experiment demonstrates the benefits of Sammy

to neighboring HTTP requests. We repeatedly issue 3MB HTTP

requests during video playback. We measure the HTTP response

time, the time between when the first byte of the request was is-

sued and the last byte of the response was received. The results

are shown in Figure 8c—Sammy improves average HTTP response

times by 18%, reducing them from 1095ms to 898ms.

Streaming video:We run another experiment to measure the

impact of Sammy on a neighboring video session. We start one

Sammy session, and after a few seconds we start a neighboring

session using Netflix’s production algorithm. Figure 8d shows the

play delay for the neighboring session. Over four trials, Sammy

consistently improves the play delay of its neighbor by 4%—an

average of 50ms. Whenever a streaming service shares a bottleneck

with itself, Sammy can improve the service’s own play delay. This

result gives streaming services an incentive to deploy Sammy.

7 CONCLUSION
Our approach shows that ABR algorithms can dramatically reduce

the burstiness of video traffic without reducing QoE. In our experi-

ments run at scale at Netflix, Sammy is able to reduce the median

chunk throughput by 61%, reducing retransmissions by 36% and

RTTs by 14%. These improvements to network congestion came

with no harm to video QoE. In fact, we observed a small improve-

ment in video quality (both initially and overall) and play delay, and

no statistically significant changes to rebuffers. Because Sammy

does not aim to fully utilize the link, there is more bandwidth avail-

able for neighboring traffic during Sammy’s on periods. Our lab

experiments illustrate how this can improve performance for neigh-

boring traffic: Sammy reduces delay for a neighboring UDP flow

by 51%, increases throughput for a neighboring TCP flow by 28%,

reduces response times for neighboring HTTP traffic by 18%, and

even reduces play delay for neighboring video traffic by 4%. We

leave deeper investigations of the impact on neighboring traffic to

future work, and would be especially interested in experiments to

measure the impact at scale.

In many ways, today’s video streaming architecture is a response
to the two control loops managed by ABR and congestion control.

Congestion control algorithms learn and acquire their fair share of

bandwidth on a packet-by-packet timescale; and in turn ABR algo-

rithms adapt bitrates at chunk-by-chunk timescale. Given the steps

taken in this paper, a compelling future path forward is to consider

a single control loop to both determine the video bitrate and when

to transmit each bit of the stream over the network. This algorithm

could jointly optimize video QoE and transport-layer goals like con-

gestion and fairness, and could avoid the pitfalls associated with

two interacting control loops [30]. We leave that work for others.

Here, we instead have the ABR algorithm limit the server’s send-

ing rate, so as to allow more rapid deployment with current video

streaming services, and keeping with standard practice of sharing

the internet using congestion control algorithms. One could also

imagine a range of options between the two, where ABR algorithms

share more and more information with the underlying transport

layer. Broadly, the significant empirical results found in this paper

suggest that such innovations have the potential for significant

impact not only on video streaming services, but the internet at

large.

We view our work as a starting point for using application-level

logic to smooth out internet traffic. We have shown that video

streaming does not always need the maximum throughput a net-

work can achieve. The layering architecture of the internet en-

courages other applications to use a similar strategy of allowing

congestion control algorithms to select the maximum throughput

without application input. By using details about the behavior of

other applications, we may be able to make other types of internet

traffic into friendlier neighbors as well.
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A APPENDIX: RELATIONSHIP BETWEEN
THROUGHPUT, BITRATE, AND BUFFERS

Appendices are supportingmaterial that has not been peer-reviewed.

In this appendix, we will formalize the relationship between

chunk throughput, bitrates, and buffer sizes.

There are a number of chunk selection opportunities, which

occur at steps 𝑡 ∈ {1, . . . ,𝑇 }. The chunk at time 𝑡 has a duration 𝑑𝑡
and size 𝑠𝑡 which is selected by the ABR algorithm.

One step: Each time we select a chunk at time 𝑡 , the buffer will

evolve in some way. Let Δ𝑡 be the time it takes to add chunk 𝑡 to

the buffer. For simplicity we will assume the buffer never becomes

full and never becomes empty, but we could instead keep track of

the amount of full and empty time after each chunk downloads.

The buffer evolution is given by the following standard equation

[30]:

𝐵𝑡+1 = 𝐵𝑡 + 𝑑𝑡 − Δ𝑡 . (2)

We will define the bitrate of chunk 𝑡 as

𝑟𝑡 =
𝑠𝑡

𝑑𝑡
. (3)

We will define 𝑥𝑡 , the throughput of chunk 𝑡 (e.g. in units of bits

per second), as

𝑥𝑡 =
𝑠𝑡

Δ𝑡
=
𝑟𝑡𝑑𝑡

Δ𝑡
. (4)

Note that with these definitions,

𝐵𝑡+1 = 𝐵𝑡 + 𝑑𝑡 − 𝑑𝑡
𝑟𝑡

𝑥𝑡
. (5)

Multiple steps: In addition to a single buffer step, we will also be

interested in how the buffer evolves over T steps. Define the total

duration 𝐷𝑇 as

𝐷𝑇 =

𝑇∑︁
𝑡=1

𝑑𝑡 .

When playback starts, the buffer starts at some size 𝐵0. If we expand

(2), we have the following buffer size at time𝑇+1. We could interpret

this as being the buffer right after we finish downloading the last

chunk.

𝐵𝑇+1 = 𝐵0 + 𝐷𝑇 −
𝑇∑︁
𝑡=1

Δ𝑡 . (6)

We will define 𝑆𝑇 to be the total size of chunks we download by

time 𝑇

𝑆𝑇 =

𝑇∑︁
𝑡=1

𝑠𝑡 . (7)

Define the time-average bitrate by

𝑟 =

∑𝑇
𝑡=1

𝑑𝑡𝑟𝑡

𝐷𝑇
=

𝑆𝑇

𝐷𝑇
. (8)

And finally we will define the time-average throughput as:

𝑥 =

∑𝑇
𝑡=1

Δ𝑡𝑥𝑡∑𝑇
𝑡=1

Δ𝑡
=

𝑆𝑇∑𝑇
𝑡=1

Δ𝑡
. (9)

With these definitions, the behavior of the buffer over 𝑇 steps is

the same as the behavior over one step, averaged. This is formalized
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by the following theorem, which should be compared to the single

step update equation in (5).

Theorem A.1. In the above setting,

𝐵𝑇+1 = 𝐵0 + 𝐷𝑇 − 𝐷𝑇
𝑟

𝑥
.

Proof. Given (6), all we need to show is that 𝐷𝑇
𝑟
𝑥 =

∑𝑇
𝑡=1

Δ𝑡 .
Substituting the definition of 𝑟 , we have

𝐷𝑇
𝑟

𝑥
= 𝐷𝑇

𝑆𝑇 /𝐷𝑇

𝑥
=
𝑆𝑇

𝑥
.

By the definition of 𝑥 , we have

𝐷𝑇
𝑟

𝑥
=

𝑆𝑇

𝑆𝑇 /
∑𝑇
𝑡=1

Δ𝑡
=

𝑇∑︁
𝑡=1

Δ𝑡 .

□

A.1 Discussion
The main use of this theorem in our paper is to understand which

bitrates our algorithm will pick, by understanding how a simulated

buffer evolves as a function of bitrate and throughput. But this

theorem is a much more general statement about how the playback

buffer evolves. Note that the only critical assumption we have made

is that (2) holds. Our definition of bitrates 𝑟𝑡 and throughput 𝑥𝑡
ensures that (4) follows from (2).

In this section, we will point out some of the consequences of

the Theorem for ABR algorithms.

A.1.1 Cannot exceed average throughput without buffer help.
Intuition tells us average bitrate cannot exceed average throughput.

Theorem A.1 gives us a simple formalization.

Say that the buffer does not decrease, so 𝐵0 ≤ 𝐵𝑇+1. Then

1 − 𝐵𝑇+1 − 𝐵0

𝐷𝑇
≤ 1.

By Theorem A.1, 𝑟 ≤ 𝑥 . That is, the bitrate cannot exceed average

throughput.

However if we reduce the size of the buffer, we can exceed aver-

age throughput. Suppose 𝐵0 ≥ 𝐵𝑇+1 . In this case,

1 − 𝐵𝑇+1 − 𝐵0

𝐷𝑇
≥ 1.

By Theorem A.1, 𝑟 ≥ 𝑥 .

A.1.2 Building up a buffer comes at the expense of bitrate. Sup-
pose we have built up a 5 minute buffer by the time we select the

last chunk (𝐵0 = 0, 𝐵𝑇+1 = 300), then rearranging Theorem A.1

gives:

𝑟 = 𝑥

(
1 − 5

𝐷𝑇

)
.

Over a twenty minute session, this says that 𝑟 = 0.75𝑥 . Restating,

if an ABR algorithm builds up a 5 minute buffer over a 20 minute

session then it will get a bitrate which is 75% of average throughput.

A.1.3 Intermediate buffer values do not affect average bitrate.
All the terms in Theorem A.1 are averages, the difference between

ending and starting buffer, and the duration. From the perspec-

tive of the average bitrate we can achieve, it doesn’t matter if the

throughput is stable or wildly variable. The path of the buffer is also

not important—the only terms that affect bitrate are the starting

and ending buffer sizes. We can build up a large intermediate buffer

by picking a lower bitrate than throughput, and then decrease the

buffer to regain bitrate.

As an example, suppose we start with no buffer and build up

a thirty second buffer during the first sixty seconds of playback.

By Theorem A.1, over the first sixty seconds 𝑟 = 0.5𝑥 . Suppose we

make careful choices over the rest of the session, and keep the buffer

at thirty seconds after twenty minutes of playback. By Theorem A.1,

𝑟 = 0.975𝑥 . By controlling the size of the buffer over the course of

the session, we don’t suffer for our early choice to build up a large

buffer. This effect is what allows buffer-based algorithms to achieve

high bitrates.
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