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THE DETECTION OF DEFECTIVE MEMBERS OF LARGE
POPULATIONS

By RoBERT DORFMAN
Washington, D. C.

The inspection of the individual members of a large population is an expensive
and tedious process. Often in testing the results of manufacture the work can

be reduced greatly by examining only a sample of the population and rejecting
the whole if the proportion of defectives in the sample is unduly large. In many
inspections, however, the objective is to eliminate all the defective members of
the population. This situation arises in manufacturing processes where the
defect being tested for can result in disastrous failures. It also arises in certain
inspections of human populations. Where the objective is to weed out indi-
vidual defective units, a sample inspection will clearly not suffice. It will be
shown in this paper that a different statistical approach can, under certain con-
ditions, yield significant savings in effort and expense when a complete elimina-
tion of defective units is desired.

It should be noted at the outset that when large populations are being in-
spected the objective of eliminating all units with a particular defect can never
be fully attained. Mechanical and chemical failures and, especially, man-
failures make it inevitable that mistakes will occur when many units are being
examined. Although the procedure described in this paper does not directly
attack the problem of technical and psychological fallibility, it may contribute
to its partial solution by reducing the tediousness of the work and by making
more elaborate and more sensitive inspections economically feasible. In the
following discussion no attention will be paid to the possibility of technical
failure or operators’ error.
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We know this person is sick
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Group Testing Problem

We have n items, at most s of which are “sick.”

Definition: A test returns whether a subset of items
iIncludes any sick items or not.

Problem: Construct a set of tests which can identify a
worst-case set of at most s sick items.



A better design

If every column is unigue, we win




A better design

If every column is unigue, we win

T Y9 eOYvY VYU U

Ok

Sick




A better design

If every column is unigue, we win

Ok

Sick

Sick




A better design

If every column is unigue, we win
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What we just saw

If there Is one sick person, we can fino
them non-adaptively with log n tests!



Dorfman’s Construction

This seems hard, so let’s just do something totally
random

Will show this works with decent probability and
O(s2 log n) tests
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Why iIs s?2log n tests cool?

Fraction of tests
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First idea: finding healthy people

For each set of sick people, need to be able to prove
each other person is healthy
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First idea: finding healthy people

For each set of sick people, need to be able to prove
each other person is healthy
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First idea: finding healthy people

For each set of sick people, need to be able to prove
each other person is healthy

What is the probability the test works?
P( and @& ) =~ 1/3s
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Union bound
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We just saw
P(no test works for @ and &,&,:°) = n-2s



Union bound
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We just saw
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Dorfman’s Construction

It works!
With good probability!

And very few tests!!



Why did
this work?




Key components

1. Not too many things to find
2. Get information about many things in each test

3. Can do something random
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Network Tomography:
Recent Developments

Rui Castro, Mark Coates, Gang Liang, Robert Nowak and Bin Yu

Abstract. Today’s Internet is a massive, distributed network which contin-
ues to explode in size as e-commerce and related activities grow. The hetero-
geneous and largely unregulated structure of the Internet renders tasks such
as dynamic routing, optimized service provision, service level verification
and detection of anomalous/malicious behavior extremely challenging. The
problem is compounded by the fact that one cannot rely on the cooperation
of individual servers and routers to aid in the collection of network traffic
measurements vital for these tasks. In many ways, network monitoring and
inference problems bear a strong resemblance to other “inverse problems”
in which key aspects of a system are not directly observable. Familiar sig-
nal processing or statistical problems such as tomographic image reconstruc-
tion and phylogenetic tree identification have interesting connections to those
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ABSTRACT

In this paper we consider the problem of inferring link-level loss
rates from end-to-end multicast measurements taken from a col-
lection of trees. We give conditions under which loss rates are
identifiable on a specified set of links. Two algorithms are pre-
sented to perform the link-level inferences for those links on which
losses can be identified. One, the minimum variance weighted av-
erage (MVWA) algorithm treats the trees separately and then aver-
ages the results. The second, based on expectation-maximization
(EM) merges all of the measurements into one computation. Simu-
lations show that EM is slightly more accurate than MVWA, most
likely due to its more efficient use of the measurements. We also
describe extensions to the inference of link-level delay, inference
from end-to-end unicast measurements, and inference when some
measurements are missing.

1. INTRODUCTION

As the Internet grows in size and diversity, its internal behavior be-
comes ever more difficult to characterize. Any one organization has
administrative access to only a small fraction of the network’s inter-
nal nodes., whereas commercial factors often prevent organizations

-internal links us-
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Abstract

The fundamental objective of this work is to determine the extent
to which unicast, end-to-end network measurement is capable of
determining internal network losses. The major contributions of
this paper are two-fold: we formulate a measurement procedure
for network loss inference based on end-to-end packet pair mea-
surements, and we develop a statistical modeling and computation
[framework for inferring internal network loss characteristics. Sim-
ulation experiments demonstrate the potential of our new frame-

is easily carried out on most networks and is scalable. Our
approach employs unicast, end-to-end measurement of sin-
gle packet and back-to-back packet pair losses, which can
be performed actively or passively. By back-to-back packet
pairs we mean two packets that are sent one after the other
by the source, possibly destined for different receivers, but
sharing a common set of links in their paths. Throughout the
remainder of the paper we work with “success” probabilities
(probability of non-loss) instead of loss probabilities. This
provides a more convenient mathematical parameterization
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Network Tomography: Estimating Source-Destination
Traffic Intensities From Link Data

Y. VARDI

The problem of estimating the node-to-node traffic intensity from repeated measurements of traffic on the links of a network is
formulated and discussed under Poisson assumptions and two types of traffic-routing regimens: deterministic (a fixed known path
between each directed pair of nodes) and Markovian (a random path between each directed pair of nodes, determined according
to a known Markov chain fixed for that pair). Maximum likelihood estimation and related approximations are discussed, and
computational difficulties are pointed out. A detailed methodology is presented for estimates based on the method of moments.
The estimates are derived algorithmically, taking advantage of the fact that the first and second moment equations give rise to a
linear inverse problem with positivity restrictions that can be approached by an EM algorithm, resulting in a particularly simple

solution to a hard problem. A small simulation study is carried out.

KEY WORDS: Communication network; Computer network; EM algorithm; Linear inverse problems; Maximum-likelihood;
Moment method; Origin-destination tables; Poisson traffic; Positivity constraints; Trip matrix.

bution

paper, we introduce a new methodology for network
by, specifically, estimating the probability distribu-
> queuing delay on each link based on end-to-end
hcket pair measurements. Our approach employs
nd-to-end measurement of back-to-back packets.
p-back packets, we mean two packets that are sent
pusly by the source, possibly destined for different
but sharing a common set of links in their paths. The
[s should experience approximately the same on each
K in their path.

nference methodologies focused on multicast routing.
5t routing, packets are delivered from sender to the re-
bne send operation. Along the path, probe packets are
as needed as the paths diverge (2], [6]. Although mul-
ods show promise for network performance inference,
hiques are often impractical in real networks. Many
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A network, failing
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Tomography problem

We have a graph G=(V.E) with n edges, at most s edges
are sick.

Definition: A graph-constrained test returns whether any
edges in a connected subset of edges are sick or not.

Problem: Construct a set of graph-constrained tests
which can identify any set of at most s sick edges.



This seems tricky

| | | @
N

Which is sick?



This seems tricky

Theorem [Harvey et al 2007]: For the line graph on n
nodes, about n/2 tests required

Proof: Each neighboring pair of edges must be
separated by some test. Each test is a path and can only
separate two pairs. There are about n pairs.
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2. Get information about many things in each test

3. Can do something random
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Our informal result

If @ graph is sufficiently well-enough connected, we
can find any set of s sick edges using
O(s2 log n) tests



Our informal result

If @ graph is sufficiently well-enough connected, we
can find any set of s sick edges using
O(s2 log n) tests
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Same as group testing
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Example: K4 (6 edges)
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Key components

1. Not too many things to find
2. Get information about many things in each test

3. Can do something random
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POPULATIONS

By RoBERT DORFMAN
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The inspection of the individual members of a large population is an expensive
and tedious process. Often in testing the results of manufacture the work can

be reduced greatly by examining only a sample of the population and rejecting
the whole if the proportion of defectives in the sample is unduly large. In many
inspections, however, the objective is to eliminate all the defective members of
the population. This situation arises in manufacturing processes where the
defect being tested for can result in disastrous failures. It also arises in certain
inspections of human populations. Where the objective is to weed out indi-
vidual defective units, a sample inspection will clearly not suffice. It will be
shown in this paper that a different statistical approach can, under certain con-
ditions, yield significant savings in effort and expense when a complete elimina-
tion of defective units is desired.

It should be noted at the outset that when large populations are being in-
spected the objective of eliminating all units with a particular defect can never
be fully attained. Mechanical and chemical failures and, especially, man-
failures make it inevitable that mistakes will occur when many units are being
examined. Although the procedure described in this paper does not directly
attack the problem of technical and psychological fallibility, it may contribute
to its partial solution by reducing the tediousness of the work and by making
more elaborate and more sensitive inspections economically feasible. In the
following discussion no attention will be paid to the possibility of technical
failure or operators’ error.
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