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Abstract

Streaming video tra�c from services like Netflix and YouTube accounts for the vast majority internet

tra�c today—recent estimates put the fraction as high as 60-75% of all bytes sent over the internet.

Given video tra�c is such a large fraction of the internet, this thesis makes video tra�c friendlier

to neighboring applications that share the same networks.

The thesis begins with Sammy, a system that smooths out video tra�c so that the throughput of a

video session is close to the minimum the video session needs for good performance. By judiciously

picking throughput based on the needs of the video application, Sammy is able to substantially

smooth out video tra�c. In internet-scale experiments, Sammy reduces throughput of video tra�c

by more than half and dramatically reduce congestion, all while slightly improving video quality of

experience over today’s top production algorithms.

The thesis next considers how new algorithms that a↵ect congestion on the internet (like Sammy)

are evaluated in networking research today. The gold standard is to run large-scale A/B tests, to

understand at how an algorithm actually performs in practice. I show in experiments run at scale

that typical A/B tests can lead to biased results, even to the point of switching the direction of

results—an algorithm that appears worse in an A/B test might actually improve performance when

deployed, and vice versa. I discuss the implications of this and suggest how researchers can deal

with this bias.

Finally, I revisit the long-standing problem of sizing bu↵ers in routers. Prior work suggested

that bu↵ers can be reduced by a factor of square root of the number of flows using the router,

o↵ering dramatic bu↵er reductions in networks carrying many flows. I revisit these results, removing

assumptions and showing that they hold for modern congestion control algorithms. Importantly, I

discuss how our approach of smoothing video tra�c with Sammy challenges the assumptions of the

classic bu↵er sizing problem, potentially allowing for a future with much smaller bu↵ers.

Overall, this thesis invites us to reconsider how we deal with network congestion at scale. Rather

than focusing on congestion control algorithms that maximize throughput, we should prioritize the

ways we actually use the internet—applications like video streaming and web browsing and gaming

and so on. If we do so, we can reduce congestion and improve the performance of all applications

that share the internet.
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Chapter 1

Introduction

On-demand streaming video from services like Netflix and YouTube currently comprises 50-75% of

internet tra�c [152]. With a single application having such a large volume of tra�c, as a community

we should closely examine how it uses the network and ensure that it is as good a neighbor as possible.

If we do so, we will improve the internet for all applications that share it.

Video tra�c today has the on-o↵, bursty tra�c pattern shown in Figure 1.1a: every few seconds,

video switches between an on period of sending data as quickly as possible and an o↵ period of

silence. This well-known phenomenon [147] arises from a mismatch between the bitrate (the number

of bits watched over the time the video plays) and the throughput (the number of bits downloaded

over the time the video is downloading).

Congestion control algorithms [141] choose the throughput for video tra�c, aiming to maximize

throughput without congesting the network. The bitrate for video tra�c is chosen by Adaptive

Bitrate (ABR) algorithms. Video is split up into “chunks” of a few seconds each, and each chunk

is encoded at a number of di↵erent bitrates: from a higher quality, larger version, to a lower qual-

ity, smaller version. An ABR algorithm selects the bitrate of each chunk to ensure high-quality,

uninterrupted playback.

Whenever throughput of a chunk is higher than the bitrate of a chunk, the video downloads

faster than it is played back. To allow smooth video playback despite this mismatch, the chunk is

temporarily stored on the player, in a playback bu↵er to be played later. During on periods when

throughput is higher than bitrate, the playback bu↵er grows. Once the bu↵er is full, video tra�c

pauses downloading and creates the o↵ periods shown in Figure 1.1a.

Over the past decade, video tra�c has been getting more bursty: on periods are getting shorter,

and o↵ periods are getting longer. A decade ago, home access speeds and video bitrates were both

on the order of a few megabits per second [42, 108], and so throughput and bitrate were similar and

video tra�c spent most of its time in on periods [147]. Since then, median home network speeds

worldwide have improved to tens or hundreds of megabits per second [167, 43]. Video encoding has

1
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(a) Video tra�c today. (b) Smoother, same QoE.

Figure 1.1: A few seconds of a typical streaming video session. Today, video has on periods (light
grey) where it sends data as fast as the network supports (a). But as shown in (b), we can smooth
throughput and reduce congestion without impacting video QoE.

also improved: today a 1080p video requires only a few megabits per second [108] and a 4k video

requires typically less than twenty megabits per second [129]. Videos download faster, playback

bu↵ers fill up faster, and video tra�c has shorter, faster on periods.

In this thesis, I will argue that despite this trend, video tra�c should not be bursty. I will

show that if we smooth out video tra�c (the majority use of the internet today) we can improve

performance for neighboring applications sharing the same network. Moreover, video streaming

services are incentivized to smooth out video tra�c to maximize their own performance. Smoothing

out video tra�c is good for everybody.

This thesis is organized into three parts. I begin by going into more detail about why video

tra�c should be smoother and introduce an algorithm, Sammy, to smooth out video tra�c. I next

look at how to run experiments with algorithms like Sammy that a↵ect congestion on the internet.

Finally, I discuss sizing bu↵ers in internet routers (a classic problem in networking) and discuss how

our approach to smoothing video tra�c fundamentally changes this problem.

1.1 Sammy: an algorithm to smooth video tra�c

Bursty video tra�c is undesirable to neighboring tra�c sharing the same network. During on periods,

video tra�c uses congestion control algorithms like TCP Reno [97], Cubic [78], or BBR [33] to pick a

throughput. The goal of these algorithms is to maximize throughput, while simultaneously avoiding

congestion. Designing congestion control algorithms that work well has been a long-standing problem

in networking, and there are consequences to sending as fast as possible with the algorithms we do
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have, including packet loss and queueing delay, bu↵erbloat [69], and unfairness between TCP flows

[17, 2, 191, 28, 118, 13, 158, 94, 51, 190, 30, 93, 105, 182, 183, 101].

As an alternative, consider what would happen if we were to reduce throughput below network

capacity as shown in Figure 1.1a. We would avoid congestion completely. There would be no

queueing delay or packet loss. A short HTTP request issued during an on period could complete

faster with more available bandwidth and lower queueing delay. A longer-lived video conferencing

flow would see more consistent throughput and delay. Reducing burstiness should benefit all other

tra�c on the internet. This is a natural idea, and smoothing video tra�c has been suggested by

prior work [70, 2, 4, 126, 154, 22, 122].

The major challenge in reducing the throughput for video tra�c (and what has not been consid-

ered by prior work) is doing so without reducing the performance of video tra�c. Video performance

is known as Quality of Experience (QoE) and is measured by three components: video quality (how

good the video looks), play delay (how long the video takes to start playing), and rebu↵ers (times

when the video playback is interrupted because data is not available). Video QoE is important for

the experience of the people watching the video [50, 115, 199], and therefore also important to video

streaming services. We would not want to smooth video tra�c—the majority use of the internet—by

making its users su↵er.

But video can be made less bursty without reducing QoE. As an example, consider Figure 1.1b.

We have taken the exact same video streaming trace and smoothed it out. We have reduced the

throughput1 to the level of the video bitrate—well below the network capacity. From the end user’s

perspective, the quality of experience (QoE) of the video is identical: quality is the same (the same

number of bytes are downloaded in the same amount of time), the play delay is the same (the width

of the dark gray box is the same), and there are no rebu↵ers (the bu↵er never empties).

Although this example shows that video tra�c can be smooth in theory, there are a number of

challenges in designing an algorithm to smooth video tra�c in practice. I go into detail about the

challenges and ways of solving them in Chapter 2. I propose an algorithm called Sammy,2 which

smooths out video tra�c without reducing QoE, and work with Netflix to implement and evaluate

this algorithm at scale. In large-scale experiments run at Netflix, Sammy substantially smooths

video tra�c: at the median, lowering throughput by more than half, improving congestion, and

even slightly improving video QoE.

Streaming video services are incentivized to use approaches like Sammy to smooth video tra�c.

First, neighboring tra�c could easily be from the same video service. By improving performance for

its neighbors, Sammy improves performance for the video service itself. Second, Sammy forces an

ABR algorithm to be careful about its use of throughput estimates. This exercise gave us a slight

QoE improvement, and could yield larger improvements for other ABR algorithms.

1
Note that we have defined throughput here as the throughput during on periods

2
As of this writing, Sammy is the current reigning world’s fastest snail [145].
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1.2 Experimenting at scale with algorithms like Sammy

Sammy’s evaluation, like that of most new networking algorithms, heavily relies on experiments

called A/B tests. In an A/B test, the experimenter randomly allocates a small fraction of tra�c

(say 1% or 5%) to a new algorithm, called the treatment group, and compares its performance

against the control group running the old algorithm. A/B tests are widely used as the gold standard

for understanding how a new algorithm will behave at scale. Almost all large tech companies

routinely use A/B tests to evaluate changes before deploying them [113, 176, 120, 34, 73, 48, 104,

157, 138]. Networking research often includes the results of A/B tests, and uses them to justify new

algorithms [96, 36, 161, 34, 33, 138, 117, 53, 63, 52, 120, 104, 92, 127, 193, 119].

Imagine running an A/B test with Sammy, in which there are two video sessions that share the

same network: one treatment and one control. Imagine that by smoothing the treatment session, we

are able to improve performance of the control neighbor—perhaps the control quality improves while

treatment quality remains the same. In this example, using Sammy would be an improvement overall.

But if we were to analyze the results as an A/B test, Sammy would appear to perform worse: we

would compare treatment to control, and Sammy has lower quality than the newly improved control.

This confusion is caused by interference, when units in the treatment group interact with units

in the control group. It is well known in causal inference that interference can bias experiment

results [95]. In social networks, changing something for a user in the treatment group can impact

the behavior of their friends in the control group and bias the results of an experiment [58]. In

online marketplaces, increasing the price of items in a treatment group can increase the demand for

the relatively cheaper items in the control group and bias results [88]. There are many examples of

interference bias from markets, education, disease, and more [109, 44, 80, 89].

In networking experiments, packets from treatment and control groups use the same networks,

traversing the same links and the same queues. There is a long line of networking research showing

that algorithms compete with each other when sharing a congested network [158, 94, 189, 190, 30,

93, 182, 183, 17, 2, 191, 28, 118, 13, 51, 105]. If an algorithm like Sammy frees up bandwidth, the

control tra�c could take up that bandwidth and get better performance. This could make Sammy

look worse than it would if the uncapped tra�c were not present, even if it was improving congestion.

In Chapter 3, I show that interference exists not only in this hypothetical experiment, but also

biases the results of A/B tests run at scale in congested networks. To do so, I describe a produc-

tion experiment with bitrate capping, a technique used in response to COVID-19 to lower bitrates

o↵ered and reduce overall internet load [72, 6]. Bitrate capping reduces congestion and improves

performance in this experiment, but A/B tests give the opposite result—incorrectly suggesting that

bitrate capping increases congestion!

The goal of this chapter is to make the networking community, both academic researchers and

industry practitioners, aware of the bias of A/B tests and to propose techniques to help mitigate it.

This research was conducted prior to the development of Sammy, hence the use of bitrate capping
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in experimentation. I encourage future work evaluating Sammy at scale, or other algorithms that

smooth video tra�c. More generally, I encourage the community to apply these techniques broadly

and evaluate networking algorithms with alternate experiments, and continued measurement and

development of new techniques to mitigate bias.

1.3 Bu↵er sizing theory, and experiments for video tra�c

In the last chapters of the thesis, I revisit a classic problem in networking: sizing router bu↵ers.

When packets arrive at internet routers, they are put into a bu↵er to be sent later. When packets

arrive faster than the link capacity (the speed they are sent), the bu↵er grows. When they arrive

slower, the bu↵er shrinks. The bu↵er allows the router to smooth out variability in arrival rates:

when arrival rates are higher than capacity, the bu↵er allows the router to avoid dropping packets.

When arrival rates are below capacity, the bu↵er allows the router to maintain link utilization.

There has been a long-standing question in networking of how big these bu↵ers should be. Sizing

the router bu↵er correctly is important, and the tradeo↵ is typically thought of as follows: if the

router bu↵er is too small, congestion control algorithms can under-utilize the link. But if a bu↵er is

too large, packets are delayed and the router is more complex and costly to manufacture.

There are two widely used rules of thumb for sizing router bu↵ers to ensure 100% link utilization

with TCP Reno: Case 1: When a network carries a single TCP Reno flow. Van Jacobson

observed in 1990 [98] that a bottleneck link carrying a single TCP Reno flow requires a router bu↵er

of size B � BDP, the bandwidth-delay product, in order to keep the link fully utilized.

Case 2: When a network carries multiple TCP Reno flows. Appenzeller, Keslassy, and

McKeown argued in 2004 [8] that a bottleneck link carrying n long-lived TCP Reno flows requires

a bu↵er of size B � BDP/
p
n in order to keep the link highly utilized.

In Chapter 4, I revisit these rules of thumb and show similar rules that apply to modern congestion

control algorithms, accounting for TCP changes like Rate-Halving [86, 160] and PRR [52], and

modern congestion control algorithms such as Cubic [78], BBR [33] and BBRv2 [35]. Furthermore,

we precisely characterize link utilization as a function of bu↵er size, and show how smaller bu↵ers

can still maintain high (though not 100%) link utilization.

One of the themes of this thesis is that video QoE does not translate directly between classic

networking goals like packet loss or 100% link utilization, and so by focusing on QoE we can make

progress on classic networking problems. To this end, I describe experiments with bu↵er sizing run

at Netflix in Chapter 5, where I adjust the size of router bu↵ers and measure the impact on video

QoE. Properly sizing a bu↵er is both crucial for improving network and video quality of experience,

and also quite di�cult to do. We show experiments with both too-small and too-large bu↵ers, both

of which can negatively impact QoE.

The problem of bu↵er sizing is to make bu↵ers as small as possible in order to ensure high
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utilization for a congested link. But note that this is the opposite goal we have with Sammy, where

we would like to ensure a link is not congested and utilized as little as possible while still ensuring high

QoE. This di↵erence fundamentally changes the bu↵er sizing problem for algorithms like Sammy

that smooth video tra�c. We go into more detail about this in Chapter 6, and discuss how sizing

bu↵ers for video tra�c is still very open for future work.

1.4 Conclusions

Sammy significantly reduces congestion in experiments (reducing RTTs by 20% and retransmits by

50%), but is very di↵erent from typical approaches to congestion control. In fact, one could argue

that Sammy is not a traditional congestion control algorithm at all. As we conclude in Chapter 6,

this calls for a reevaluation of the way we approach congestion control in networking research.

Traditionally, congestion control research focuses on maximizing throughput. This leads to

a zero-sum game where one algorithm getting more throughput causes its neighbors to get less,

harming its neighbors. This thesis advocates for a di↵erent perspective on congestion control:

prioritizing real-life internet usage (such as video streaming) while fostering a friendly environment

for neighboring tra�c. This fresh approach creates a number of opportunities for future research.

As discussed in Chapter 6, potential next steps include making video tra�c even friendlier,

reexamining congestion control and bu↵er sizing for video tra�c, and implementing experiments

with Sammy on a larger scale. I hope that Sammy is the beginning of new sort of research on

internet congestion which uses application-level logic to create friendlier internet tra�c, and that

future work will help explore the potential of this approach. Together, we can create a better internet

for everyone.



Chapter 2

Making video tra�c a friendly

internet neighbor

2.1 Introduction

As discussed in Chapter 1, smoothing video tra�c can reduce congestion and make it a friendlier

internet neighbor. The major challenge is in doing so without making video tra�c perform worse.

There are two di↵erent aspects of this challenge.

First, there is a fundamental limit to how much tra�c can be smoothed without impacting

QoE. For example, take the smoothed video session shown in Figure 2.1a. We could smooth this

even more by reducing the throughput before playback starts to match the rest of the session as in

Figure 2.1b. But this would increase play delay. No bu↵er will be built up, so the playback will

rebu↵er if throughput varies.

Second, ABR algorithms have historically had a core assumption that measurements of chunk

throughput give them accurate estimates of the available bandwidth of the network [194, 193, 5,

101, 154, 168, 172, 91, 169]. Reducing chunk throughput breaks this assumption, and could cause

an ABR algorithm to select lower qualities—artificially lowering QoE.

In this chapter, I present a novel solution to this challenge and make video tra�c smoother.

Remarkably, our approach is uniformly beneficial: substantially smoothing video tra�c while slightly

improving QoE relative to existing, finely-tuned production video streaming systems.

To smooth video tra�c, I allow ABR algorithms to directly limit TCP’s packet-by-packet sending

rate using a new technique called application-informed pacing. An ABR algorithm might ask for

a chunk of video to be delivered at no more than one packet per millisecond, and TCP uses TCP

Pacing [86, 2, 191, 33, 132, 151, 74] to send packets no faster than once every millisecond. This

allows the ABR algorithm to smooth out throughput across the full range of timescales: from the

7
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(a) Smoother video tra�c, same QoE

(b) Video tra�c that has been smoothed to the point of

reducing QoE (startplay delay is higher)

Figure 2.1: A few seconds of a typical streaming video session. Today, video has on periods (light
grey) where it sends data as fast as the network supports (a). But as shown in (b), we can smooth
throughput and reduce congestion without impacting video QoE.

level of a few packets, to an entire chunk, to an entire video session. Application-informed pacing is

described in more detail in Section 2.3.2.

I next propose Sammy,1 an algorithm that selects both bitrates and pacing rates to achieve high

video QoE and improve smoothness. Sammy is described in Section 2.4. Our key insight, described

in Section 2.3.1, is that while ABR algorithms have historically used measurements of available

bandwidth to make their decisions, they do not need accurate estimates to achieve good QoE.

I implement Sammy at Netflix and evaluate it with large scale, production experiments in Sec-

tion 2.5. Sammy substantially smooths video tra�c: at the median, lowering chunk throughput

by 51%. This improves congestion metrics: improving retransmissions by 52%, and RTTs by 22%.

Sammy slightly improves video QoE relative to production values: improving initial video quality

by 0.2% and overall quality by 0.03%, while maintaining rebu↵ers, and play delay.

I present illustrative lab experiments in Section 2.6 in which Sammy improves the performance of

neighboring tra�c: increasing its throughput and reducing queueing delay. Sammy improves delay

for a neighboring UDP flow by 48%, improves throughput for a TCP flow by 25%, improves response

times for HTTP tra�c by 18%, and improves play delay for another video session by 5%.

Streaming video services are incentivized to deploy Sammy. First, neighboring tra�c could easily

be from the same video service. By improving performance for its neighbors, Sammy improves

performance for the video service itself. Second, Sammy forces an ABR algorithm to be careful

about its use of throughput estimates. This exercise gave us a slight QoE improvement, and could

1
As of this writing, Sammy is the current reigning world’s fastest snail [145].
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yield larger improvements for other ABR algorithms.

This work is a first step towards smoothing video tra�c. I conclude in Section 2.7 by highlighting

that there is still more work to be done. As a community, we have an opportunity to further smooth

tra�c, video and beyond. After all, a smoother internet benefits everyone.

2.2 Background and Related Work

The burstiness of video tra�c arises from the standard architecture of modern video streaming

services. One of the core design principles of the internet is layering [41], separating applications

from underlying transport protocols. The internet community has kept a minimalist inter-layer

interface, giving applications little ability to express their service goals. As a result, transport pro-

tocols optimize for transport-level goals: maximizing throughput, avoiding congestion, and splitting

throughput fairly. Adaptive bitrate (ABR) algorithms select bitrates to ensure that viewers get the

best quality of experience (QoE) possible, given whatever throughput is picked by TCP.

In this section, we will give an overview of existing work and describe why this architecture

makes it di�cult to achieve our goal of smoothing video tra�c while achieving high QoE. In this

section we focus on the most relevant papers. For a more complete overview, there are a number of

wider surveys [116, 153, 143].

2.2.1 ABR algorithms

When a network has limited bandwidth, there is a tradeo↵ between the three major video QoE

metrics: quality, startplay delay, and rebu↵ers. A video playback can have both high quality and no

rebu↵ers if it incurs a high play delay by downloading the entire video before it starts. It can start

quickly in a slow network by either picking a low quality or rebu↵ering after playback starts. The

role of an ABR algorithm is to manage this tradeo↵ between the di↵erent QoE metrics, and ensure

that the user gets the best possible QoE.

Videos are split up into chunks of a few seconds each. Each chunk is encoded in a ladder of

di↵erent bitrates: from a small, low-quality version to a larger, high-quality version. The ABR

algorithm chooses a rung from this ladder for each chunk. The transport layer then splits that

chunk into packets and sends each packet to the video client. When chunks are downloaded, they

are added to a playback bu↵er in the video client. Even if the network is unavailable, the client can

continue playing as long as there are chunks in the bu↵er.

When it takes too long to download a chunk, the bu↵er can shrink and it may be impossible to

maintain high video quality without rebu↵ers. To deal with this, ABR algorithms can pick lower

bitrates to grow the bu↵er and avoid rebu↵ers. There are two main types of ABR algorithms in use

today:



CHAPTER 2. MAKING VIDEO TRAFFIC A FRIENDLY INTERNET NEIGHBOR 10

Throughput-based: An ABR algorithm that takes explicit throughput measurements from

the network, and uses them to select bitrates [194, 193, 5, 101, 154, 168, 172]. Typical algorithms

produce some estimate based on chunk throughput, and then use it to optimize the various QoE

metrics. ABR algorithms can also use throughput in other ways, for example, Oboe [5] switches

between several parameter settings based on throughput measurements. It is generally understood

[194, 193] that throughput-based algorithms will perform better the more accurately they are able

to predict throughput of upcoming chunks.

Bu↵er-based: An ABR algorithm may select a bitrate based only on the bu↵er level [91, 169].

When the bu↵er is low, the algorithm will pick the lowest bitrate. When the bu↵er is high, it will pick

the highest bitrate. Over time, these algorithms converge to an average bitrate close to the average

chunk throughput. In e↵ect, the bu↵er size encodes the past available bandwidth measurements from

the network. In practice, bu↵er-based algorithms can also include a throughput-based component

during startup [168].

Existing ABR algorithms rely on the available bandwidth measurements produced by TCP. By

decreasing chunk throughput, we could make existing ABR algorithms perform worse. We discuss

how we address this in Section 2.3.2.

Until now, ABR algorithms have focused on maximizing the quality of experience (QoE) for a

video streaming client given whatever throughput is chosen by TCP. ABR algorithms do not make

choices about throughput. In contrast, our goal is to design an algorithm that smooths video tra�c

and achieves high QoE while improving the internet for neighboring tra�c.

2.2.2 TCP

Once an ABR algorithm has selected a chunk, it is the job of TCP congestion control algorithms

to decide how fast to send the packets of that chunk into the network. Congestion control algo-

rithms balance competing goals: achieving high throughput, avoiding congestion, and fairly splitting

network resources among users [141, Sec. 3.2].

There is a long line of research on congestion control, and we refer the reader to existing surveys

for details [143]. It is challenging (if not impossible [195, 200]) to simultaneously achieve all the

goals of congestion control, and there are examples of congestion control algorithm struggling with

packet loss and queueing delay, bu↵erbloat [69], and unfairness [17, 2, 191, 28, 118, 13, 158, 94, 51,

190, 30, 93, 105, 182, 183, 101]. By focusing on the needs of video QoE, Sammy gives up the goal

of achieving high chunk throughput and so is able to improve congestion and leave more bandwidth

available for other users of the network.

Our work uses the classic idea of TCP Pacing: a mechanism for adding delay between successive

packet sends to reduce the size of bursts, and reduce packet drops and queueing delay [86, 2, 191,

33, 132, 151, 74]. Pacing gives packets a constant interarrival time, which theoretically minimizes

queueing delay in general settings [79]. In practice, pacing reduces congestion [2, 191, 132]. Typically
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Paper Main Goal Smoothing
Mechanism

Eval. Preserves QoE? Smooths below TCP?

Our work Smoothness ABR-informed

Pacing

Prod. 3 3

TCP Pacing [2] Packet bursts Pacing Prod. 3 7
Trickle baseline [70] Wasted bu↵er Token Bucket ? ? 3
Trickle [70] Packet bursts CWND limit Prod. ? 3
[154] Wasted bu↵er Delays TTFB Lab 7 7
SABRE #1 [126] Bu↵erbloat RWND limit Lab 7 3
SABRE #2 [126] Bu↵erbloat RWND limit Lab 7 3
[4] Video fairness Token Bucket Lab 7 3
[22] Video fairness Token Bucket Lab 7 7

Table 2.1: Related work on smoothing video tra�c either does not preserve QoE or does not reduce
throughput below TCP-selected rates.

the time between successive packets is set to a value larger than the cwnd/RTT [2, 180], which reduces

burstiness at the packet-level, but does not reduce chunk throughput. BBR [33] is a congestion

control algorithm that directly adjusts the pace rate, but it aims to pace close to the bottleneck

capacity while Sammy aims to pace significantly lower.

There has been prior work on improving fairness among competing video clients at the TCP layer.

PCC Proteus [131] is a “scavenger” TCP protocol, i.e., it gives up throughput when competing with

a non-scavenger congestion control algorithm. The authors describe a hybrid mode, in which video

tra�c switches from non-scavenger to scavenger mode when the throughput exceeds a threshold and

show that this improves performance when multiple video clients compete. Minerva [134] improves

fairness between competing video sessions by sharing proportionally based on a measure of perceptual

quality. Sammy does not focus on improving fairness or competing in a certain way, but rather on

making video tra�c as smooth as possible for the benefit of its neighbors.

2.2.3 Reducing Burstiness for Video Tra�c

There has been prior work on reducing the burstiness of video tra�c. The novelty of our work is

that by designing a joint ABR and rate limiting algorithm, we are able to reduce chunk throughput

below available bandwidth while achieving comparable QoE to today’s top ABR algorithms.

Related work on reducing video burstiness is summarized in Table 2.1. There are a number of

di↵erences to our work. The baseline algorithm described in Trickle [70] reduces chunk throughput

based on the video encoding rate with the goal of reducing wasted bu↵ers when videos end early. The

impact of this algorithm on QoE, smoothness, or neighboring tra�c is not evaluated in the paper but

since the Trickle baseline reduces bu↵er sizes it likely has some impact on QoE. In contrast, our work

explores how to design an ABR algorithm to improve smoothness while achieving high QoE. Work on

pacing like TCP Pacing [2] and Trickle (relative to their baseline) [70] focuses on reducing per-packet

burstiness while maintaining TCP-selected throughput. There is work [4, 126, 154] which reduces
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throughput below TCP’s selected rate using mechanisms other than pacing, and this work does not

preserve video QoE (typically because it treats ABR algorithms as a black box). Finally, there is

some related work [22, 122] which delays the time to first byte (TTFB) of the HTTP response. This

reduces bu↵er sizes, but does not improve smoothness over TCP.

There has also been prior measurement work, observing that some video tra�c reduces burstiness

in practice using some of the mechanisms described above [147, 9].

The challenge of reducing burstiness with existing ABR algorithms

All prior work on reducing burstiness for video tra�c falls short of achieving high video QoE because

they treat ABR algorithms as a black box.

Today’s ABR algorithms are designed to use either explicit measurements of available band-

width (as in the case of throughput-based ABR algorithms) or implicit ones collected through the

accumulation of a bu↵er (as with a bu↵er-based algorithm). If we reduce burstiness by reducing

throughput, this changes available bandwidth and can easily cause ABR algorithms to select lower

bitrates and reduce QoE.

As an example of how reducing chunk throughput can cause QoE issues, imagine a simple ABR

algorithm which measures the minimum throughput x over the last few chunks and picks the highest

video bitrate < cx for some constant c.2 Say we set c = 0.5, and picked a pacing rate of 1.5x the

video bitrate. This would cause a downward spiral [90]: we would start with video bitrate B, pick a

pacing rate of 1.5 ·B, and measure a throughput of x = 1.5 ·B. We would then pick the highest video

bitrate lower than 0.5 · (1.5 · B) = 0.75 · B, and would switch down. We would continue switching

down until we reached the lowest bitrate.

As another example, imagine all chunks are one second long, and we pick a pace rate equal to the

chunk bitrate. The chunk will download in exactly the same amount of time as it takes to play, one

second. As a result, the playback bu↵er will not increase and remain at a near-zero level. If chunk

throughput varied at all, there would be a rebu↵er. For bu↵er-based algorithms, this also means

that the bu↵er will not grow large enough to select a high bitrate chunk, reducing video quality.

2.3 Design discussion

In this section, we will describe the key components of Sammy: the key idea behind designing an

ABR algorithm for pacing, and the application-informed pacing mechanism Sammy uses to limit

TCP’s throughput. In Section 2.4, we will use these components when introducing Sammy.

2
This is the default dash.js algorithm when the bu↵er is low [168].
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2.3.1 Designing ABR algorithms for pacing

Application-informed pacing reduces throughput below the available bandwidth of the network.

With pacing, an ABR algorithm might never learn the available bandwidth of a network. As

discussed in Section 2.2, existing ABR algorithms rely on measurements of available bandwidth. So

how can an ABR algorithm optimize QoE with pacing?

The main idea behind our approach is that while ABR algorithms have historically used estimates

of available bandwidth to make their decisions, they do not need accurate available bandwidth

estimates to achieve good QoE. An ABR algorithm only needs to know whether the network can

support the highest bitrate, or if it needs to reduce video quality to improve QoE.

For example, imagine streaming a video with a top bitrate of 10 Mbps. Once we have built up

a small playback bu↵er, the ABR algorithm only needs to know whether the network throughput is

high enough to sustain the top bitrate without rebu↵ering. If the available bandwidth is 100 Mbps

or 1000 Mbps, a good algorithm would still pick the top bitrate.

Instead of relying on accurate estimates of available bandwidth, Sammy can use a pacing-informed

ABR algorithm that instead solves a decision problem: is the available bandwidth of the network

enough to pick a bitrate, or not? As we will discuss in Section 2.4.2, many commonly used ABR

algorithms implicitly rely on such a decision problem and do not need accurate estimates of available

bandwidth.

An alternate approach would be to estimate available bandwidth despite pacing, for instance

using packet pair techniques [106, 111], or not pacing some portion of requests. We did not pursue

this, in favor of an approach that avoids exact throughput estimation in the first place, as described

above.

2.3.2 Limiting TCP throughput with application-informed pacing

Streaming video tra�c is bursty because TCP sends as fast as the available network bandwidth,

which is often higher than needed for good QoE. Our approach is to have the ABR algorithm reduce

TCP’s sending rate with application-informed pacing : a new technique that allows applications to

set an upper limit on TCP’s sending rate. By carefully limiting TCP’s bursts, an ABR algorithm

can reduce chunk throughput below the available network bandwidth while achieving high QoE.

In application-informed pacing, the ABR algorithm selects a pace rate and sends this rate to the

server via an HTTP header. The server uses TCP Pacing as described in Section 2.2 and [86, 2, 191]

to limit the sending rate at the server side. To achieve a desired rate of R packets per second, the

server delays sending packets to ensure that there is a delay of at least 1/R seconds between the

starts of successive packets.

Application-informed pacing is TCP-fair to existing internet tra�c. TCP congestion control

can still limit the sending rate by reducing the congestion window or pace rate, so the resulting

throughput is at most the requested pace rate.
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Deployability. Application-informed pacing is readily deployable. TCP Pacing is already part

of the Linux kernel [54], is used in production at Google [33, 132, 151], and is available in certain

NICs [151]. In Linux, an HTTP server can implement application-informed pacing by setting the

SO MAX PACING RATE socket option [56] to an application-provided value.

There is CDN support for application-informed pacing. Akamai supports CMCD, a video stan-

dard that allows clients to limit server-side throughput using the rtp parameter [12, 3]. Fastly allows

setting TCP pace rates based on the value of an HTTP header [62].

Application-informed pacing is an example of cross-layer design, and there are lots of other ways

to limit TCP’s throughput. A system could use client receive windows to limit throughput [126],

could limit a server’s congestion window [70], or could use a server-side token bucket to reduce rates

[4]. These techniques might be more bursty than application-informed pacing, but might be more

easily deployable in certain settings.

2.4 Sammy

We will now describe Sammy, our joint ABR and pace rate selection algorithm. Sammy has separate

algorithms for the initial phase (before playback starts), and the playing phase. This separation

comes as a natural consequence of the di↵erent QoE goals of each phase. During the initial phase,

one important goal is to start playback quickly. Once the playback starts, the QoE goal shifts

towards avoiding rebu↵ers with high quality.

2.4.1 Algorithm for the Initial Phase

The initial phase of a video is the time period between when a user initiates playback and the

playback actually starts. During this phase, ABR algorithms download chunks and build up a small

bu↵er before beginning playback. Sammy has four competing QoE goals in this phase:

1. High initial quality: Sammy should pick high bitrates for the first few chunks of video

playback.

2. Few rebu↵ers: Sammy should build up a su�ciently large bu↵er before playback starts to

avoid rebu↵ers.

3. Low play delay: Sammy should begin playback as quickly as possible.

4. Smoothness: Sammy should smooth out tra�c by picking low pace rates.

In the initial phase, we will not aim to improve smoothness. Play delay, the latency between a user

clicks to play and the first frame is displayed, is sensitive to decreases in chunk throughput. Holding

initial quality and starting bu↵er sizes the same and reducing throughput means we download the

same number of bytes in a longer period of time and play delay will increase. Not pacing during the
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initial phase has a minor impact on our overall goal because the initial phase is a small fraction of

tra�c: it is short relative to video duration, typically a few seconds over a session that is tens of

minutes long. We will not pace and focus purely on the remaining three QoE goals.

That said, Sammy does need a pacing-aware algorithm for the initial phase. At the beginning

of the initial phase, ABR algorithms do not yet have estimates of throughput from the current

session but need to select a bitrate. To do so, prior work uses throughput measurements from the

playing phase of previous sessions [100, 172]. With pacing, we significantly decrease throughput in

the playing phase, making these inaccurate estimates of initial throughput. An alternate approach

is to use information from the beginning of the TCP connection to estimate throughput [193], but

our client implementations do not provide access to this information.

In Sammy, we record historical throughput measurements from only the initial phases of previous

sessions on the same device and use them to select the initial bitrate. This approach has the

advantage that we can decrease throughput as much as possible during the playing state without

impacting throughput estimates in the initial state.

Having produced an initial throughput estimate which is una↵ected by pacing, Sammy uses

Netflix’s existing bitrate selection algorithm for the initial phase.

2.4.2 Algorithm for the Playing phase

During the playing phase, Sammy selects both a bitrate and a pace rate to balance three competing

QoE goals:

1. High quality: Sammy should pick high video bitrates.

2. Few rebu↵ers: Sammy should avoid playback interruptions by keeping the bu↵er above zero.

3. Smoothness: Sammy should smooth out tra�c by picking low pace rates.

Picking a lower pace rate can a↵ect all three goals: it improves smoothness, reduces throughput

estimates (potentially impacting video quality), and causes bu↵ers to grow more slowly (potentially

impacting rebu↵ers).

Our overall strategy for the playing phase will be to pick an ABR algorithm that allows us to

reduce throughput estimates without impacting bitrate selection. We analyze the algorithm to find

the minimum required throughput to avoid impacting bitrate selection. We then use a bu↵er-based

algorithm [91] to pick high pace rates when the bu↵er is low (growing the bu↵er more quickly) and

lower pace rates when the bu↵er is high (growing the bu↵er more slowly), while ensuring that the

pace rates stay above the minimum required throughput from our analysis.

Sammy’s ABR algorithm: As discussed in Section 2.3.1, instead of relying on an ABR

algorithm which accurately estimates available bandwidth, Sammy will use an ABR algorithm based

on a decision problem: is the available bandwidth high enough to pick a bitrate, or not? It will then
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(a) A typical throughput-based ABR algorithm picks

higher bitrates as the bu↵er grows.

(b) A typical throughput-based ABR algorithm has a

minimum throughput needed to select a chunk.

Figure 2.2: By analyzing how an ABR algorithm picks bitrates as a function of chunk throughput
estimates (a), we can find a lower bound on pace rates to avoid impacting QoE (b).

pick a pace rate which ensures the ABR algorithm can correctly answer this question for the top

bitrate.

Fortunately, many existing ABR algorithms implicitly solve such a decision problem. As an

example, we will consider a typical throughput-based algorithm: the HYB algorithm [5], modified

to use lookahead (i.e. take upcoming chunk sizes into consideration). This analysis also applies to

MPC algorithms [194] with appropriately chosen utility functions. The HYB algorithm computes

a throughput estimate from recent throughput measurements, and multiplies this estimate by a

parameter � 2 [0, 1] to o↵set prediction errors. It then uses a standard bu↵er update equation [90]

to predict how the bu↵er evolves over the lookahead duration. It picks the highest bitrate which

keeps the bu↵er above zero.

To better understand the behavior of this algorithm, in Section 2.4.3 we analyze how the playback

bu↵er evolves over time. Let DT be the lookahead duration of the upcoming T chunks. We show

that for a throughput x, bitrate r, and starting bu↵er size B0, the bu↵er evolves according to

BT = B0 +DT �DT
r

�x
.

HYB picks the highest bitrate which keeps BT > 0, which gives us the following constraint on the

bitrate r:

r  �x

✓
1 +

B0

DT

◆
.

This function is shown in Figure 2.2a: as both bu↵ers and throughput grows, HYB will pick higher

bitrates. Implicitly, HYB uses a bu↵er-based approach to select bitrates [91].

As a corollary, this gives us a minimum throughput required to pick a bitrate r.

x � r�
�1

✓
1 +

B0

DT

◆�1

. (2.1)
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We graph this function in Figure 2.2b: when the bu↵er is empty, HYB needs an estimate of through-

put equal to the bitrate divided by �. When the bu↵er is lower, HYB can select a bitrate with a

lower throughput.

Equation 2.1 is the function HYB uses implicitly to decide whether or not throughput is high

enough to select a bitrate. In order to avoid impacting bitrate selection, we must pick a pace rate

higher than this value. When the bu↵er is empty, we must pick a pace rate of at least 1/�. When

the bu↵er is larger, we can pick a lower pace rate without impacting bitrate selection.

Sammy uses Netflix’s production ABR algorithm, which is an MPC-style algorithm. We won’t

go into the details of this production algorithm, because it is proprietary and because our focus is

to demonstrate how existing ABR algorithms can work with pacing.

Sammy’s pace-rate selection. When the bu↵er is empty, Sammy paces at a multiple of the

top bitrate. When the bu↵er is full, Sammy paces at a di↵erent, smaller multiple of the top bitrate.

We set parameters so that the pace rate is above the minimum throughput required to pick the top

bitrate given by Equation (2.1) and Figure 2.2. We can choose higher parameter values than this to

tune the tradeo↵ between rebu↵ers and pace rates. Once Sammy selects a pace rate, it communicates

this rate to the transport layer using application-informed pacing, as discussed in Section 2.3.2.

2.4.3 Relationship between chunk throughput, bitrates, and bu↵er sizes

In previous sections, we relied on a relationship between chunk throughput, bitrates, and bu↵er

sizes. In this section, we will formalize this relationship.

There are a number of chunk selection opportunities, which occur at steps t 2 {1, . . . , T}. The

chunk at time t has a duration dt and size st which is selected by the ABR algorithm.

One step: Each time we select a chunk at time t, the bu↵er will evolve in some way. Let �t

be the time it takes to add chunk t to the bu↵er. For simplicity we will assume the bu↵er never

becomes full and never becomes empty, but we could instead keep track of the amount of full and

empty time after each chunk downloads.

The bu↵er evolution is given by the following standard equation [90]:

Bt+1 = Bt + dt ��t. (2.2)

We will define the bitrate of chunk t as

rt =
st

dt
. (2.3)

We will define xt, the throughput of chunk t (e.g. in units of bits per second), as

xt =
st

�t
=

rtdt

�t
. (2.4)
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Note that with these definitions,

Bt+1 = Bt + dt � dt
rt

xt
. (2.5)

Multiple steps: In addition to a single bu↵er step, we will also be interested in how the bu↵er

evolves over T steps. Define the total duration DT as

DT =
TX

t=1

dt.

When playback starts, the bu↵er starts at some size B0. If we expand (2.2), we have the following

bu↵er size at time T+1. We could interpret this as being the bu↵er right after we finish downloading

the last chunk.

BT+1 = B0 +DT �
TX

t=1

�t. (2.6)

We will define ST to be the total size of chunks we download by time T

ST =
TX

t=1

st. (2.7)

Define the time-average bitrate by

r̄ =

PT
t=1 dtrt

DT
=

ST

DT
. (2.8)

And finally we will define the time-average throughput as:

x̄ =

PT
t=1 �txtPT
t=1 �t

=
STPT
t=1 �t

. (2.9)

With these definitions, the behavior of the bu↵er over T steps is the same as the behavior over

one step, averaged. This is formalized by the following theorem, which should be compared to the

single step update equation in (2.5).

Theorem 1. In the above setting,

BT+1 = B0 +DT �DT
r̄

x̄
.

Proof. Given (2.6), all we need to show is that DT
r̄
x̄ =

PT
t=1 �t. Substituting the definition of r̄,

we have

DT
r̄

x̄
= DT

ST /DT

x̄
=

ST

x̄
.
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By the definition of x̄, we have

DT
r̄

x̄
=

ST

ST /
PT

t=1 �t

=
TX

t=1

�t.

Discussion

The main use of this theorem in our paper is to understand which bitrates our algorithm will pick,

by understanding how a simulated bu↵er evolves as a function of bitrate and throughput. But this

theorem is a much more general statement about how the playback bu↵er evolves. Note that the only

critical assumption we have made is that (2.2) holds. Our definition of bitrates rt and throughput

xt ensures that (2.4) follows from (2.2).

In this section, we will point out some of the consequences of the Theorem for ABR algorithms.

Cannot exceed average throughput without bu↵er help Intuition tells us average bitrate

cannot exceed average throughput. Theorem 1 gives us a simple formalization.

Say that the bu↵er does not decrease, so B0  BT+1. Then

1� BT+1 �B0

DT
 1.

By Theorem 1, r̄  x̄. That is, the bitrate cannot exceed average throughput.

However if we reduce the size of the bu↵er, we can exceed average throughput. Suppose B0 �
BT+1. In this case,

1� BT+1 �B0

DT
� 1.

By Theorem 1, r̄ � x̄.

Building up a bu↵er comes at the expense of bitrate

Suppose we have built up a 5 minute bu↵er by the time we select the last chunk (B0 = 0,

BT+1 = 300), then rearranging Theorem 1 gives:

r̄ = x̄

✓
1� 5

DT

◆
.

Over a twenty minute session, this says that r̄ = 0.75x. Restating, if an ABR algorithm builds

up a 5 minute bu↵er over a 20 minute session then it will get a bitrate which is 75% of average

throughput.

Sample paths do not e↵ect bitrate

All the terms in Theorem 1 are averages, the di↵erence between ending and starting bu↵er, and

the duration. From the perspective of the average bitrate we can achieve, it doesn’t matter if the

throughput is stable or wildly variable. The path of the bu↵er is also not that important—we can
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Type Metric % Chg. 95% CI
Congestion Chunk Throughput -50.5 [-51.2, -49.7]

% Retransmits -52.2 [-54.7, -49.9]
RTT -21.5 [-24.9, -21.5]

QoE Initial VMAF 0.22 [0.2, 0.3]
VMAF 0.03 [0.0, 0.1]

Play Delay – [-1.4, 0.1]
Rebu↵ers (/ hr) – [-10.2, 11.0]

Rebu↵ers (% sess) – [-7.4, 3.8]

Table 2.2: A/B Test results for Sammy including the percentage change to control and confidence
intervals. All statistically significant metric movements are improvements over Netflix’s production
algorithm.

build up a large intermediate bu↵er by picking a lower bitrate than throughput, and then spend it

and regain bitrate.

As an example, suppose we start with no bu↵er and build up a thirty second bu↵er during the

first sixty seconds of playback. By Theorem 1, over the first sixty seconds r̄ = 0.5x̄. Suppose we

make careful choices over the rest of the session, and keep the bu↵er at thirty seconds after twenty

minutes of playback. By Theorem 1, r̄ = 0.975x̄. By controlling the size of the bu↵er over the course

of the session, we don’t su↵er for our early choice to build up a large bu↵er. This e↵ect is what

allows bu↵er-based algorithms to achieve high bitrates.

2.5 Production Evaluation

We implemented and ran our algorithm in production at Netflix. To evaluate its performance, we

run a series of A/B tests [193, 164] to tune our algorithm and understand the tradeo↵s between

video QoE and congestion-related metrics. We compared Sammy to Netflix’s existing extensively

tested and finely-tuned production algorithm, to emphasize how Sammy can improve smoothness

while maintaining or improving QoE. Each A/B test consisted of a control group running Netflix’s

production algorithm, and many treatment groups. Each treatment group had di↵erent settings of

Sammy’s parameters. We allocated a small fraction of Netflix’s tra�c to each test (¡ 0.5%), and

measured the values of video- and transport-level metrics.

Our results show that Sammy significantly improves smoothness and reduces congestion-related

metrics while slightly improving video QoE.

Parameter values: We will present results for a single set of parameters for Sammy throughout

the rest of the paper, and we briefly discuss other parameter values in Section 2.5.3. Specifically,

Sammy paces at 11.0x the maximum bitrate when the bu↵er is empty, and 2.9x the maximum bitrate

when the bu↵er is full using the algorithm described in Section 2.4.2. Sammy also tunes certain

parameters of Netflix’s existing ABR algorithm.
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Figure 2.3: Reduction in chunk throughput (95% CI) for accounts with di↵erent pre-experiment
chunk throughputs. Sammy reduces burstiness for accounts with pre-experiment throughput > 6
Mbps.

2.5.1 Sammy reduces congestion

We first show that Sammy significantly improves smoothness, retransmissions, and round-trip times

of Netflix tra�c compared to the existing production algorithm. Table 2.2 presents the percent

change between Sammy and Netflix’s production algorithm, together with the 95% confidence in-

terval.

Improving smoothness: To measure how much Sammy smooths video tra�c, we focus on the

average chunk throughput (the throughput during “on” periods). Sammy does not reduce quality,

so reducing chunk throughput causes on periods to become longer, and increases the available

bandwidth for neighboring tra�c during on periods. We calculate the median of per-session average

chunk throughput for both Netflix’s production algorithm and Sammy. Sammy reduces chunk

throughput by 50.5%.

Sammy’s ability to reduce throughput depends on how much higher network bandwidth is relative

to maximum bitrates. This raises the question about how Sammy performs in slower networks. For

all accounts in the A/B test, we computed their pre-experiment throughput by looking at the 95th

percentile of their chunk throughput for the week before the test began. We grouped accounts by

the range of pre-experiment throughput: ¡6 Mbps, 6-15 Mbps, 15-30 Mbps, 30-90 Mbps, and ¿

90 Mbps. We calculated average chunk throughput within each group of accounts, and compared

Sammy’s throughput of each group to that of the production algorithm. Figure 2.3 shows the percent

change in throughput as a function of pre-experiment throughput. For accounts with pre-experiment

throughput of more than 90 Mbps, Sammy reduces chunk throughput by 64%. As pre-experiment

throughput decreases, Sammy reduces chunk throughput less. But Sammy does significantly reduce

throughput (improving smoothness) for all pre-experiment throughputs more than 6 Mbps.

Reducing network congestion: Intuitively, reducing chunk throughput and improving smooth-

ness should translate into improvements in congestion-related metrics, specifically lower packet re-

transmission rates and round-trip times (RTTs). This is supported by our A/B test results.
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We calculate the fraction of retransmitted bytes over all bytes sent by TCP for each session.

Sammy improves the median fraction of retransmitted bytes over all sessions by 52.2%. We measure

RTTs for each packet sent by TCP and store them for each TCP connection in a t-digest [57]. We

merge the t-digests for all TCP connections in a session, and estimate the median RTT for the

session. We measure the median of median RTTs over all sessions. Sammy improves RTTs by

21.5%.

Given Sammy reduces chunk throughput, improves smoothness, and reduces congestion for Net-

flix tra�c, it is plausible that neighboring tra�c sharing a bottleneck link with Netflix’s tra�c

should see improvements as well. Section 2.6 shows in a lab setting that Sammy’s improvements in

congestion-related metrics can translate to QoE improvements for neighboring tra�c.

2.5.2 Sammy improves QoE

It is not surprising that picking lower pace rates would improve smoothness and network congestion,

but more surprisingly, we show this can be done at no cost to the video user experience. In our

experiments, Sammy slightly improves QoE. These results are summarized in Table 2.2.

Improving quality: We measure video quality by Video Multi-method Assessment Fusion

(VMAF) [25], a method for estimating a viewer’s perception of a video’s visual quality. We calculate

a time-weighted average of VMAF to get a score for each session, and measure the median score

over all sessions. Sammy slightly increases overall VMAF, which is driven primarily by an increase

in initial VMAF (the VMAF during the first twenty seconds of video playback). In other words,

Sammy’s video quality is slightly higher than with Netflix’s production algorithm.

The improvements to initial VMAF (and overall VMAF) in our experiments come primarily from

using only estimates of initial throughput during the initial phase (instead of chunk throughput from

the playing phase of previous sessions), and from retuning Netflix’s initial bitrate selection algorithm

around these new throughput estimates.

Maintaining other metrics: Sammy has no statistically significant impact on any other aspect

of QoE. There is no significant change in rebu↵ers: both the fraction of sessions that have at least

one rebu↵er, and the number of rebu↵ers per hour streamed. There is also no significant di↵erence

in play delay.

2.5.3 Tradeo↵s and parameter settings

Sammy has a number of parameters that can be tuned, including parameters for pace rate selection

and for the chosen ABR algorithm. We used Ax [142] to search the parameter space and find a

Pareto improvement to all metrics of interest across multiple rounds of A/B testing.

Di↵erent parameter settings allow us to trade o↵ between the di↵erent metrics of interest. Fig-

ure 2.5 shows the tradeo↵ between chunk throughput and video quality. Each point represents

one treatment group in an A/B test, each with a di↵erent value of parameter settings. The x-axis
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Figure 2.4: Change in retransmissions as a function of the pacing burst size in a production A/B
test. Lower burst sizes improve retransmissions.

Figure 2.5: Tradeo↵ between video quality (VMAF) and chunk throughput for di↵erent choices of
parameters.
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is the % change in chunk throughput for that group, and the y-axis is the % change in VMAF.

The parameters we selected reduced chunk throughput by 51% relative to control, while increasing

VMAF by 0.03%. Other parameter settings give other points on this tradeo↵. Eventually, decreasing

throughput results in a decrease in VMAF.

2.5.4 A baseline approach reduces QoE

Sammy works hard to avoid reducing QoE with pacing, and a natural question is whether this work

is necessary. Why not just pick a pace rate which is much higher than the maximum bitrate and

call it a day? We ran an experiment which shows that this approach underperforms Sammy in all

of our goals.

We ran an experiment with the production Netflix ABR algorithm in which we limited the pacing

rate for each chunk to 4x the maximum bitrate. We made no other changes. Pacing in this way

reduced chunk throughput by 53% but we observed a degradation in most of the major components

of video QoE: play delay increased by 6%, and VMAF decreased by 0.2%. The play delay increase

was enough to reduce the overall level of streaming, causing the experiment to be automatically

stopped by safety systems.

Sammy outperforms this approach in both congestion and QoE-related metrics. Sammy achieves

a comparable reduction in chunk throughput of 51% while improving QoE. If we were to choose

parameters from Figure 2.5 which reduced QoE, Sammy would achieve a higher throughput reduction

of 75% for a much lower VMAF reduction of 0.07%.

2.5.5 E↵ect of burst size

With pacing, there is an option of how large a burst to send at a time. To pace at 12 Mbps with

1500 byte MTU, we could send one packet every 1 ms, two packets every 2 ms, or 10 packets

every 10ms. Intuitively, there is a tradeo↵ in picking the burst size: smaller bursts should improve

congestion-related metrics, but also reduce opportunities for segmentation o✏oad which can increase

CPU usage.

Netflix’s TCP implementation’s default behaviour is to limit line-rate bursts to no more than 40

packets at a time. We ran an experiment where we paced at a constant 2x the maximum bitrate,

and adjusted the per-packet bursts from 4 packets up to 40 packets. Figure 2.4 shows the results of

this experiment.

Pacing with a burst size of 40 packets corresponds to only reducing chunk throughput, and not

reducing the size of per-packet bursts. This reduces retransmissions by 40% relative to not pacing.

As the burst size decreases, retransmits reduce by up to 60% relative to not pacing. But as the burst

size decreases, there is no statistically di↵erence in either chunk throughput or video QoE metrics.

This result shows why it is beneficial to use TCP Pacing instead of capping the congestion

window as in prior work [70]. In our experiments, we use a burst size of 4 packets. By reducing
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Figure 2.6: Initial quality di↵erence over time during an A/B test. The treatment algorithm is
missing historical data at the beginning of the experiment, and so performs worse over the entire
experiment.

the burst size from 40 (as it would be if we capped the congestion window) to a burst size of 4, we

improve retransmissions by an additional 20%.

2.5.6 E↵ect of historical data

As described in Section 2.4.1, Sammy and prior work use historical throughput measurements for

initial bitrate selection. Doing so creates a dependency between successive sessions: the throughput

at the beginning of one session impacts the bitrate selection decisions at the beginning of the next.

Using historical data improves performance, but the dependency creates challenges for evaluation.

As an example, we ran an experiment simulating introducing a new historical estimate. The

treatment group started with no historical measurements, while the control group had historical

measurements. Both groups updated historical throughput with the same estimates, and there were

no other di↵erences between the groups. Figure 2.6 shows the percent di↵erence in initial quality

over the course of the experiment. The treatment group started with much lower initial quality

and it stayed lower over the course of the experiment. It took a week for the initial quality of the

treatment group to reach its closest point to the control group.

To deal with this challenge, we reset historical throughput information in both treatment and

control groups in all experiments to enable an “apples-to-apples” comparison between the two.

2.6 Improving QoE of neighbors

In this section, we will present lab experiments where we directly measure how Sammy improves the

QoE of neighboring tra�c. The previous section shows how Sammy reduces chunk throughput and

congestion-related metrics at scale. Lab experiments with a single setting are clearly not represen-

tative of most tra�c on the internet, so the goal of these experiments is to illustrate how Sammy

can improve the QoE of a few applications that might share its bottleneck.
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Figure 2.7: Throughput and RTT for a single Sammy flow running in a lab environment compared
to Netflix’s production algorithm. After 3 seconds, Sammy reduces chunk throughput enough to
avoid congesting the link. Reducing chunk throughput helps it avoid on-o↵ periods beginning for
control tra�c around 25 seconds.

(a) Neighboring UDP traf-

fic

(b) Neighboring TCP traf-

fic

(c) Neighboring HTTP

tra�c

(d) Neighboring video

tra�c

Figure 2.8: In the lab, Sammy improves QoE for neighboring tra�c relative to control for (a) UDP
one-way delay, (b) TCP throughput, (c) HTTP response time, and (d) video play delay.

Without Sammy, the video tra�c fully utilizes the link and fills up the queue, in turn impacting

neighboring tra�c. Sammy smooths out tra�c, and chunk throughput drops to well below network

capacity. This behavior avoids congesting the link, and gives neighboring tra�c more bandwidth to

use for itself.

Experiment setup. In all experiments, we use a 40 Mbps link with a 5ms RTT, and a queue

size of 4 times the bandwidth-delay product. Sammy plays a video with a maximum bitrate of 1.05

Mbps. We run a video session using Netflix’s production algorithm and a neighboring application at

the same time, and then repeat the same experiment using Sammy and observe how the neighbor’s

QoE changes.

Sammy on its own. To understand how Sammy improves performance for neighboring tra�c,

we will first look at how it performs on its own. Figure 2.7 shows the throughput and RTT for a

single Sammy flow, compared to a single control flow running Netflix’s production ABR algorithm.

At the beginning of the session, both Sammy and control send as fast as possible during the

initial phase: fully utilizing the network and filling up the queue. Playback starts after about three

seconds, at which point Sammy begins pacing. The pace rate it picks is about 20 Mbps—low enough

to avoid congesting the link, so RTT goes to zero. Over the rest of the session, Sammy decreases

the throughput to about 15 Mbps. This rate is below its TCP-fair share rate of 20 Mbps when it
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shares a link with neighboring tra�c.

The change in metrics for this session is comparable to the overall change in metrics for the A/B

test in Section 2.5. For this session Sammy reduces throughput by 46% (slightly less than in the

A/B test) and RTTs by 42% (about twice as much as in the A/B test results).

When neighboring tra�c shares this particular network with Sammy, it will experience an extra

5 Mbps of available bandwidth and no additional queueing delay. This leads to the following benefits

(shown in Figure 2.8):

UDP: We first run an experiment where the neighboring tra�c is a 5 Mbps paced UDP flow.

The one-way delay measured for UDP packets is shown in Figure 2.8a. Sammy eliminates queueing

delay for the UDP tra�c, reducing the one-way delay by 48%. Without Sammy, video tra�c keeps

the queue full (see Figure 2.7) and the UDP tra�c experiences queueing delay. Sammy sends no

faster than 20 Mbps during playback, so the queue stays empty even with 5 Mbps of UDP tra�c.

TCP: We next run an experiment where the neighboring tra�c is a standard, congestion window

limited TCP Reno connection. The TCP connection begins 10 seconds after playback starts. The

TCP throughput is shown in Figure 2.8b. Without Sammy, the TCP flow gets an average of 20

Mbps (slightly higher than its TCP-fair share of throughput). Sammy increases throughput for the

TCP flow by 25% which gets an average of 25 Mbps.

HTTP: The next experiment demonstrates the benefits of Sammy to neighboring HTTP re-

quests. We repeatedly issue 3MB HTTP requests during video playback. We measure the HTTP

response time shown in Figure 2.8c: the time between when the first byte of the request was issued

and the last byte of the response was received. Sammy improves average response times by 18%,

reducing them from 1095ms to 898ms.

Streaming video: We run another experiment to measure the impact of Sammy on a neigh-

boring video session. We start one Sammy video session, and after a few seconds we start a video

session using Netflix’s production algorithm. We show the play delay for the neighboring session in

Figure 2.8d. Over four trials, Sammy consistently improves the play delay of its neighbor by 5%—an

average of 282ms. When a streaming service shares a bottleneck with itself, Sammy can improve a

streaming service’s own play delay in this way. This result gives stremaing services an incentive to

deploy Sammy.

2.7 Conclusion

Our approach shows that ABR algorithms can dramatically reduce the burstiness of video tra�c

without reducing QoE. In our experiments run at scale at Netflix, Sammy is able to reduce the median

chunk throughput by 51%, reducing retransmissions by 52% and RTTs by 22%. These improvements

to network congestion came with no harm to video QoE. In fact, we observed a small improvement in

video quality (both initially and overall) and no statistically significant changes in other video QoE
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metrics. Because Sammy does not aim to fully utilize the link, there is more bandwidth available for

neighboring tra�c during Sammy’s on periods. Our lab experiments illustrate how this can improve

performance for neighboring tra�c: Sammy reduces delay for a neighboring UDP flow by 48%,

increases throughput for a neighboring TCP flow by 25%, reduces response times for neighboring

HTTP tra�c by 18%, and even reduces play delay for neighboring video tra�c by 5%. We leave

deeper investigations of the impact on neighboring tra�c to future work, and would be especially

interested in experiments to measure the impact at scale.

In many ways, today’s video streaming architecture is a response to the two control loops managed

by ABR and TCP. TCP learns and acquires its fair share of bandwidth on a packet-by-packet

timescale; and in turn ABR algorithms adapt bitrates at chunk-by-chunk timescale. Given the steps

taken in this paper, a compelling future path forward is to consider a single control loop to both

determine the video bitrate and when to transmit each bit of the stream over the network. This

algorithm could jointly optimize video QoE and transport-layer goals like congestion and fairness,

and could avoid the pitfalls associated with two interacting control loops [90]. We leave that work

for others. Here, we instead have the ABR algorithm limit TCP’s sending rate, so as to allow

more rapid deployment with current video streaming services, and keeping with standard practice of

sharing the internet using TCP. One could also imagine a range of options between the two, where

ABR algorithms share more and more information with the underlying transport layer. Broadly,

the significant empirical results found in this paper suggest that such innovations have the potential

for significant impact not only on video streaming services, but the internet at large.

We view our work as a starting point for using application-level logic to smooth out internet

tra�c. We have shown that video streaming does not always need the maximum throughput TCP

can achieve. The layering architecture of the internet encourages other applications to use a similar

strategy of allowing TCP to select the maximum throughput without application input. By using

details about the behavior of other applications, we may be able to make other types of internet

tra�c into friendlier neighbors as well.



Chapter 3

Unbiased Experiments in

Congested Networks

3.1 Introduction

Engineers routinely run A/B tests when testing new network algorithms. In an A/B test, the

experimenter randomly allocates a small fraction of tra�c (say 1% or 5%) to a new algorithm,

called the treatment group, and compares its performance against the control group running the old

algorithm. A/B tests are widely used as the gold standard for understanding how a new algorithm

will behave at scale. Almost all large tech companies routinely use A/B tests to evaluate changes

before deploying them [113, 176, 120, 34, 73, 48, 104, 157, 138]. Networking research often includes

the results of A/B tests, and uses them to justify new algorithms [96, 36, 161, 34, 33, 138, 117, 53,

63, 52, 120, 104, 92, 127, 193, 119].

So when we recently ran experiments to test whether bitrate capping reduces network congestion

for Netflix, we ran A/B tests. Bitrate capping was introduced in response to COVID-19; major

streaming services cooperated with governments to lower bitrates o↵ered and reduce overall internet

load [72, 6]. This caused a reduction in congestion in certain networks around the globe.

We decided to dig deeper, to understand exactly how bitrate capping reduces congestion, and

how doing so impacts video quality metrics. While we had data from just before and after bitrate

capping was deployed (and later when it was removed), these were during periods of lockdown

and stay-at-home orders when the internet was changing rapidly. We wanted to conduct a more

systematic study of its e↵ects. Naturally, we ran an A/B test where we capped a fraction of tra�c

to a very congested network.

In this A/B test, capping didn’t appear to reduce congestion at all! In fact, it appeared to

make things worse: capped tra�c experienced 5% lower throughput and 5% higher delay. The A/B

29
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test results were so marginal that if we had not had evidence showing that bitrate capping reduced

congestion when widely deployed, we might have dismissed it and not explored further. How could

a treatment that we knew reduced congestion at scale not also reduce congestion in an A/B test?

Stepping back, we realized the confusion could be caused by interference. Interference is when

units in the treatment group interact with units in the control group. It is well known in causal

inference that interference can bias experiment results [95]. In social networks, changing something

for a user in the treatment group can impact the behavior of their friends in the control group and

bias the results of an experiment [58]. In online marketplaces, increasing the price of items in a

treatment group can increase the demand for the relatively cheaper items in the control group and

bias results [88]. There are many examples of interference bias from markets, education, disease,

and more [109, 44, 80, 89].

Both treatment and control groups in our test used the same network, and their packets traversed

the same links and same queues. There is a long line of networking research showing that algorithms

compete with each other when sharing a congested network [158, 94, 189, 190, 30, 93, 182, 183, 17,

2, 191, 28, 118, 13, 51, 105]. If capping bitrates freed up bandwidth, the uncapped control tra�c

could take up that bandwidth and get better performance. This could make bitrate capping look

worse than it would if the uncapped tra�c were not present, even if it was improving congestion.

This gave us reason to believe that interference may exist, which would explain our unexpected A/B

test results.

In this work we show that interference exists in experiments run in congested networks, and

biases the results of A/B tests at scale. We show that bitrate capping does reduce congestion, and

that the misleading A/B test result was due to interference. In order to do this, we propose and

test new experiment designs which more accurately evaluate new algorithms. Our results suggest

that usual A/B testing practice paints an incomplete picture of the performance of new algorithms

in congested networks, and should be complemented by additional experiments.

Without interference, A/B tests give us a way to safely and accurately evaluate performance

using a very small fraction of tra�c. But because of interference, A/B tests on small fractions

of tra�c do not accurately predict performance at scale. Interference therefore creates a tradeo↵

between safety and accuracy: the only way to accurately measure performance is to run an algorithm

on 100% of tra�c, but nobody would do this with an untested algorithm! Our goal in this paper

is to make the networking community, both academic researchers and industry practitioners, aware

of this tradeo↵ and to propose techniques to help mitigate it. We encourage the community to

apply these techniques broadly and evaluate networking algorithms with alternate experiments. We

encourage continued measurement and the development of new techniques to mitigate bias.

We begin with an overview of experiment design in Section 3.2. We describe how A/B tests are

run, and which quantities they estimate. Using a framework from the field of causal inference, we

define the relevant quantities of interest for new networking algorithms.
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We then run small lab experiments in Section 3.3 to give examples of how networking A/B tests

can be biased. We show that experiments using multiple parallel connections, packet pacing, and

di↵erent congestion control schemes all exhibit bias. If we were to evaluate these algorithms using

näıve A/B tests, we would make incorrect conclusions. We might prematurely abandon a good

algorithm, or deploy an algorithm that behaves worse when widely deployed than in the experiment.

Returning to our bitrate capping experiments, in Section 3.4 we describe our joint experiments

with Netflix. We study the performance of bitrate capping and report on the bias we found in our

initial A/B tests. While measurements show that bitrate capping significantly reduces congestion,

näıve A/B tests do not reflect this behavior. Näıve A/B tests miss changes in some metrics, over-

estimate or underestimate the changes in others, and even get the direction of improvement wrong

for a few. We were able to carry out this analysis due to a unique network architecture at Netflix.

Using a pair of reliably congested links with well-balanced tra�c, we ran di↵erent experiments on

each link and compared the results.

Based on our experience, in Section 3.5 we investigate possible ways experimenters can accurately

evaluate new algorithms at scale. We discuss two possible paths to managing the tradeo↵ between

safety and bias. The first is to adapt the common process of gradual deployments to measure

interference. The second involves the use of small-scale, targeted switchback experiments to more

accurately measure the e↵ects of a new algorithm while managing safety concerns. We use the

results of our paired link experiment to simulate what the experimenter might have obtained in

these alternate approaches, and show that both substantially reduce bias.

We believe this paper is just the beginning of work on unbiased network experimentation. There

is much to explore in designing more e↵ective experiments, improving the analysis of experiments we

run, and understanding the way interference behaves in networks. We wonder how many e↵ective

algorithms have been abandoned because of the way we run experiments, and what ine↵ective

algorithms have been deployed because we were misled by A/B tests? Accordingly, we situate our

work within the broader context of related research in Section 3.6 and conclude in Section 3.7.

3.2 What we want to measure

Before discussing experiments in more detail, it will be useful to give some background on how they

are run, and what they can measure. In this section we provide a formal statistical foundation for

A/B testing. The presentation is borrowed from causal inference [95]. The description is simplified,

but gives enough conceptual sca↵olding for the remainder of our work.

Treatment assignment. When we evaluate a new algorithm there are some units which run

the algorithm. Units may be users, sessions, flows, connections, servers, etc... We let U be the set of

all units. Each unit i 2 U is allocated to either treatment where it runs the new algorithm or control

where it does not. Let A be the vector of treatment assignments to all units. We denote treatment
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(a) A/B tests without congestion interference (b) A/B tests with congestion interference

Figure 3.1: A/B tests are used to estimate the total treatment e↵ect: how much better a treatment
is than control if both were deployed globally. A/B Tests give accurate estimates of Total Treatment
E↵ect (TTE) when there is no interference between sessions as in (a), but may be misleading when
there is as in (b).

as Ai = 1, and the set of treated units as T . We denote control as Ai = 0 and the set of control

units as C.

Potential outcomes. When evaluating a new algorithm, we are interested in how it improves

various metrics. In the language of causal inference, these metrics are called outcomes. Let Yi(A)

be the outcome of interest on unit i given the vector of treatment assignments A. Yi(A) might be

the average throughput of unit i, the minimum latency, or the 99th percentile packet loss. Yi(A)

can be a random variable, since we expect some variability due to randomness in algorithms and

randomness in arrivals. 1

Randomized unit assignment. In an A/B test, we randomly assign units to treatment

independently with probability p or control with probability 1 � p. In other words, each Ai is an

independent Bernoulli(p) random variable. We refer to the probability p as the treatment allocation.

To make this point more explicit, we introduce some additional notation. Define µT (p) (resp.,

µC(p)) to be the average outcome value over the randomness in the assignment of treatment (resp.

control), when the treatment allocation is p:

µT (p) = E
T⇢U

P
i2T Yi(A)

|T |

�
.

Depending on the setting and the treatment, µT (p) may or may not depend on the treatment

allocation p. This is visually depicted in Figure 3.1. µT (p) is the purple treatment line, and µC(p)

is the pink control line.

Average treatment e↵ect. An A/B test evaluates the average treatment e↵ect. This is how

much better the treatment group performs than the control group, when a p fraction of the tra�c

1
This approach to causal inference via potential outcomes was pioneered by Neyman [170] (a 1990 translation of

the original 1923 publication) and Rubin [149]; see [95] for details.
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is allocated to treatment and 1� p to control. It is defined as:

⌧(p) = µT (p)� µC(p), (3.1)

This is visually depicted in Figure 3.1. The treatment e↵ect at any point on the graph is the

di↵erence between the treatment and control lines.

Total Treatment E↵ect. When evaluating a new algorithm, we are often interested in what

would happen if we were to deploy it widely. This is the Total Treatment E↵ect, or TTE: the

di↵erence between the average outcome when all flows are in treatment and when all flows are in

control. In terms of our notation above:

TTE = µT (1)� µC(0).

This is depicted in Figure 3.1: it is the di↵erence between the right-hand side of the treatment line

(when all tra�c is treated), and the left-hand side of the control line (when all tra�c is allocated to

control). Depending on the setting, it may or may not equal the average treatment e↵ect.

Note that this definition of TTE is from the perspective of the experimenter, and not the internet.

The experimenter may only control a small fraction of all tra�c on the internet, and in this case

TTE measures what happens if they switched all tra�c under their control to a new algorithm. The

TTE is also sometimes called the “global average treatment e↵ect” in causal inference work (e.g.,

[107]), but we have avoided this name to avoid confusion around this point.

It is also reasonable to talk about TTE in specific groups of tra�c. For instance, we may be

interested in the TTE if we were to move all tra�c globally to a new algorithm, but we may be also

interested in the TTE for a single network or a group of networks. This can be incorporated into

the definition by changing the set of treatment and control flows.

Spillover. In addition to how well a new algorithm performs on its own, we are often also

interested in how a new algorithm impacts existing algorithms. Recently, [189] defined the notion of

the “harm” of a new algorithm, which is the negative e↵ect caused by a new algorithm competing

with an existing algorithm. This networking concept is similar to the concept of spillovers in the

causal inference literature (e.g. [77, 44]). Formally, we define the spillover of treatment on control as

the e↵ect of increasing the treatment fraction to p on control units, relative to when the treatment

units were not present. In terms of our notation:

s(p) = µC(p)� µC(0).

Spillover is non-zero when deploying a treatment algorithm has some impact on the control algorithm.

This is shown in Figure 3.1b. Note that spillover is only defined for p < 1. If p = 1, there is no

control tra�c and no spillover can occur.
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Spillovers may or may not be undesirable. It is possible that deploying a new algorithm can

improve existing tra�c, and we will see examples of this later.

Estimating from A/B tests All the quantities above are expectations over the distribution

of all possible treatment assignments. Any experiment has only one set of treatment assignments

and can only observe one set of potential outcomes—all other potential outcomes are missing. The

fundamental problem in causal inference is to reason about these missing outcomes given what we

observe.

In causal inference, we use the observed outcomes to estimate the quantities above. An estimator

is called unbiased for some quantity if its expectation is equal to that quantity.

In an A/B test we randomly allocate units to treatment or control, and measure

cµT (p) =

P
i2T Yi(A)

|T | .

This process gives an unbiased estimator of µT (p), since EcµT (p) = µT (p), and similarly for µC(p).

By linearity of expectation,

b⌧(p) = cµT (p)� cµC(p)

is an unbiased estimator for ⌧(p), and we can define similar estimators dTTE, and bs(p).
Congestion Interference In virtually all real-world experiments in networking today, experi-

menters run an A/B test. They infer that an improvement in the A/B test implies an improvement

if the treatment were to be deployed. In our notation, this means that they use cµT (p) and cµC(p) as

an unbiased estimate of the average treatment e↵ect ⌧(p), and then interpret ⌧(p) as if it were the

TTE. This is what we refer to as “näıve” A/B testing.

This process gives an unbiased estimate of TTE only in the very special case when the outcome

of a unit does not depend on the fraction of other units allocated to treatment. This is part of

the Stable Unit Treatment Value Assumption (SUTVA) [95], and requires that TTE = ⌧(p) for all

p, and that spillovers are zero for all p. Visually, this process assumes that algorithms behave like

Figure 3.1a and not Figure 3.1b.

Any A/B test that runs over a congested network has a clear pathway for interference between

units in the treatment and control groups. Any explicit or implicit change in how the treatment

group uses the congested network can create a di↵erent network condition for the control groups,

which may lead to di↵erent behavior. This is especially true if the test explicitly changes the timing

of how tra�c is sent, or the amount of tra�c that uses the network. Because of this, we will refer

to violations of SUTVA as congestion interference.

Note on averages Average treatment e↵ects, spillovers, and TTE are all defined as averages.

Average here refers to the distribution of units in the A/B test, and not the outcome metric. The

average treatment e↵ect could measure the average di↵erence in average latency, but it could also
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(a) Units are applications using 1 or 2 long-lived TCP

connections.

(b) Units are TCP connections which either pace tra�c

or not.

Figure 3.2: Throughput and retransmits in experiments where 10 units share a 10 Gb/s link. Every
point on the x-axis is a di↵erent A/B test. All tests suggest a large change in throughput and no
change in retransmissions, but the di↵erence between 10 treated and 10 control units (TTE) is zero
for throughput and large for retransmissions.

measure the variance of average latency or 99th percentile latency. Practitioners may also be inter-

ested in quantile treatment e↵ects, e.g. the di↵erence in 99th percentile latency between treatment

and control. These are regularly estimated from A/B test results [179, 1]. It is straightforward to

adapt our definitions to measure quantile treatment e↵ects, and could be done by replacing µT (p)

and µC(p) with quantile estimators.

3.3 Small Lab Experiments

When interference is present, näıve A/B tests do not accurately describe the behavior of a new

algorithm. They mispredict the TTE and give no estimate of spillover. To illustrate this, we set

up a small test network in the lab. The lab setup gives us a global view of how a new algorithm

performs at any fraction allocation, and lets us recreate Figure 3.1 for actual algorithms. With

these results, we can look at the results of di↵erent A/B tests, estimate TTE, and measure spillover.

These experiments do not tell us how di↵erent algorithms would behave at scale, but they provide

easy-to-understand examples of how congestion interference causes bias in näıve A/B tests.

Lab Setup Our lab consists of two servers running Linux 5.5.0, each with an Intel 82599ES

10Gb/s NIC. Each NIC is connected to a port of a 6.5Tb/s Barefoot Tofino switch via 4⇥ 10Gb/s

breakout cables. The switch has a 1 BDP bu↵er. The sender server is connected to the Tofino

with two 10G cables. The interfaces are bonded and packets are equally split between them, which

ensures that congestion happens at the switch (otherwise we only see congestion at the sender NIC).

We set MTUs to 9000 bytes so the servers can sustain a 10Gb/s rate. We add 1ms of delay at the
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sender using Linux’s tra�c controller tc, and use iperf3 to generate TCP tra�c.

3.3.1 Test 1: Multiple connections

Web browsers, video streaming clients, and other applications request data over multiple TCP

connections in parallel. Making simultaneous requests reduces head-of-line blocking, reduces page

load time, and increases utilization [156, 162, 75, 76]. This behavior depends heavily on the particular

ways an application uses TCP connections and the particular networks it traverses, and so would

typically be evaluated with a large-scale A/B test.

However, using multiple TCP connections can also allow an application to outcompete its peers

and achieve higher throughput, and so is often called “unfair” in the academic literature [17, 28].

This makes it an ideal example to illustrate how congestion interference can bias A/B tests.

We ran an experiment in the lab to illustrate this behavior and understand the bias it causes. We

ran eleven tests in which ten applications used either one or two TCP Reno connections to transfer

bulk data. We measured the average long-term throughput and retransmission rates experienced by

each application.

Figure 3.2a shows the results of the lab tests. Each test has two boxplots showing the average

throughput for applications using one or two connections. Applications using two connections had

100% higher throughput and identical retransmission rates than applications using one. As more

applications used two connections, their average throughput decreased. When all applications used

two connections, their average throughput was identical to when all applications used one. Even

worse, retransmission rates were higher when all applications used two connections.

These results are because of the way TCP fairly shares throughput between connections. If n

identical TCP connections share a bottleneck link of capacity C, we expect each to receive a long-

term average throughput of C/n. A group of flows with two connections should get a throughput

of 2C/n, 100% larger than C/n. But fundamentally, increasing the number of connections does not

increase the capacity of the link so there can be no overall improvement.

This behavior is a well-understood consequence of TCP Reno’s throughput fairness. But suppose

we followed common practice [96, 36, 161, 34, 33, 138, 117, 53, 63, 52, 120, 104, 92, 127, 193, 119]

and ran an A/B test to measure how using two parallel connections performed. To illustrate the

potential for bias, we will use the same data set interpreted in a di↵erent way.

In a näıve A/B test, we would randomly allocate some fraction of tra�c to treatment and the rest

to control. Treatment would use two connections and the rest would use one. We would compare

the throughput and retransmissions of the treatment and control groups. No matter what allocation

we picked, we would see that two connections have a 100% higher throughput than one, and that

there was no impact on retransmission rates. The näıve interpretation is that we should always use

two connections in production.

TTE and spillover give us a better idea of how two connections perform. The TTE shows that
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there would be no improvement in throughput and a 200% increase in the percentage of retransmitted

bytes if all tra�c were switched to two connections. Spillovers allow us to measure the impact of

using two connections on other applications. When nine applications use two connections, the

spillovers on the one remaining application using one connection are a 25% decrease in throughput

and an almost 175% increase in retransmissions.

These results demonstrate that any single A/B test would not accurately measure the impact of

changing the number of connections. But we should be careful not to extrapolate too much from the

lab results. Applications may benefit from being more aggressive, but using multiple connections

can also increase utilization. Without more experimentation, either could be a plausible explanation

for a measured increase in throughput. Fundamentally, we believe that the only way to accurately

measure the performance of such a policy would be to run an experiment at scale, on real tra�c.

We will discuss how to run such experiments later in Section 3.5.

3.3.2 Test 2: Pacing

Pacing is a generic, widely-used mechanism for reducing packet burstiness in a network [2, 151, 132,

33]. With pacing, a host adds delay between successive packets so that it sends a smooth, evenly

paced stream of data into the network.

The Linux Kernel has supported pacing for TCP since 2013 [55, 54]. It adds delay between

successive packets to ensure a rate of 2⇥ cwnd/RTT during slow start and 1.2⇥ cwnd/RTT during

congestion avoidance [180].

Prior work, using ns-2, has shown that unpaced TCP tra�c outcompetes paced tra�c in terms

of throughput [2, 191]. They recommend pacing at a rate of (cwnd+1)/RTT , which is implemented

by Linux. These fairness concerns suggest that spillover may be nonzero, which implies that there

would be congestion interference in an A/B test.

We ran pacing A/B tests in our lab to measure whether this interference still exists and if it

would impact the results of an A/B test. Figure 3.2b shows the results. Paced tra�c (the treatment)

obtains 50% lower throughput than unpaced tra�c (the control) in any A/B test, regardless of

allocation. In each A/B test, we observed essentially no reduction in retransmissions for pacing.

Applying usual A/B testing practice to these results might have led us to decide not to deploy

pacing. However, if we did deploy pacing, we would be pleasantly surprised to see no impact

on throughput and a large decrease in retransmissions. The A/B tests also miss that pacing is

good for other tra�c: the spillovers from pacing are an increase in throughput and a decrease in

retransmissions.

Pacing highlights the importance of estimating TTE when experimenting with networking algo-

rithms. It is not obvious that pacing changes the way connections compete with each other: we

expected it would smooth out bursts and cause lower RTT and loss with no impact on throughput.

Without careful experiment design, an experimenter could be easily misled into thinking that pacing
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Figure 3.3: Experiments where 10 TCP connections using Cubic or BBR share a 10 Gb/s link.
Throughput is the same if everyone uses either algorithm, but A/B tests suggest that both are
improvements.

is not useful, or waste e↵ort chasing a non-existent bug.

3.3.3 Test 3: Congestion Control Algorithms

There has been extensive study of the fairness of congestion control algorithms (e.g. [158, 189, 190,

30, 93, 28, 118, 13, 94, 51, 182, 183]). A treatment algorithm is often said to be unfair if it gets a

larger share of throughput when competing against a control algorithm. In terms of our metrics,

this would be if the spillover on control tra�c is a decrease in throughput.

An A/B test will not accurately measure the TTE for an unfair algorithm. The treatment

algorithm will take throughput away from the control, making the control perform worse than if the

treatment were not present. Most widely-used congestion control algorithms are known to be unfair

to at least some other algorithms in certain settings. The resulting biases undermine A/B tests on

new congestion control algorithms at scale.

As an example, it’s been widely reported that BBR is unfair to Cubic in certain situations

[158, 94, 189, 190, 30, 93]. This unfairness suggests congestion interference, so we ran simulated

A/B tests in our lab. We ran ten long-lived TCP connections, and allocated some fraction of them

to BBR and the rest to Cubic. Figure 3.3 shows our results. If we were interested in deploying

BBR in this setting and ran a 10% allocation, we would see a huge improvement in throughput. If

instead we were interested in deploying Cubic and ran a 10% allocation, we would also see a huge

improvement! But in this setting there is no di↵erence in throughput between a global allocation to

either BBR or Cubic.
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3.4 Paired link experiment with bitrate capping

In response to the increased network usage during the beginning of the COVID-19 pandemic, Netflix

worked with various governments to reduce load on the Internet, and rolled out a bitrate capping

program which reduced video quality [64]. This program capped the video bitrate delivered to

clients, while preserving the video resolution based on their subscription plans. It was observed that

between March and June 2020, capping the bitrate reduced Netflix tra�c in many countries by 25%,

and reduced congestion for a number of ISPs.

In this section, we will describe a controlled experiment we ran to accurately measure the e↵ects

of bitrate capping. Given that bitrate capping reduced Netflix tra�c by 25%, we suspected it would

decrease congestion. Our preceding lab studies also led us to suspect that standard A/B tests may

give biased results. So our goals with this experiment were to:

1. Measure the impact of bitrate capping on network performance and video quality of experience,

by estimating TTE and spillover e↵ects.

2. Estimate the bias of näıve A/B tests on these measurements, and

3. Evaluate whether alternate experiment designs would reduce this bias.

These are challenging goals to accomplish simultaneously. To evaluate the bias of a näıve A/B

test and newer experimental designs, we need to measure what happens when all tra�c is treated.

But if we treat all tra�c, we have nothing to compare against! We could run sequential experiments

and compare their results, but this makes strong assumptions about how the system behaves over

time. These would be useful assumptions to make when running alternate experiment designs, and

we wanted to use this experiment to evaluate these assumptions.

In this section we describe the experiment we ran to achieve these goals. In Netflix’s network,

there are a pair of 100 Gb/s peering links to an ISP. The links are reliably congested during peak

hours, and are statistically very similar. We treat these two links as “parallel universes,” and

can compare the outcomes of di↵erent experiments to investigate A/B test biases and congestion

interference.

Our results are striking and sobering. Bitrate capping reduced congestion at the cost of slightly

lower video quality, and improved the performance of uncapped tra�c. This was almost completely

undetected by näıve A/B tests which underestimated some treatment e↵ects, failed to detect others,

and, as we will see, even inferred the wrong direction of improvement for certain metrics.

3.4.1 Paired peering links

Netflix has a location with a pair of identical clusters, replicated for scale and redundancy. Each

cluster is identically configured with a router and a number of cache servers. Each router connects

to a partner ISP via a 100 Gb/s peering link. This setup is depicted in Figure 3.4.
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Figure 3.4: Diagram of the paired link experiment.

During peak viewing hours, demand from users connecting via this ISP increases until eventually

a large standing queue builds up on both links. Latency increases, and throughput and video quality

decrease. The congestion has a large impact on the quality observed by tra�c, and we suspected

strong congestion interference between connections sharing the same link.

A priori, we are not guaranteed that the two links will be similar to each other, since the system

is optimized to serve video and not to run experiments. The content available on the two clusters

is not identical, and di↵erent tra�c is routed to the servers across each link. To validate statistical

similarity between the two links, we collected data on both links during a week-long baseline period,

comprising over five million sessions: 50.8% on link 1, and 49.2% on link 2. Netflix collects client- and

server-side data on video performance. We looked at 24 important metrics including ones related to

network performance (throughput, RTT, etc...) and video QoE (perceptual quality, stability, etc...).

For each metric, we used the analysis approach described in Appendix 3.9 to compare links 1 and

2. We will discuss the most relevant subset of these metrics.

We obtained the following results, reported as means and 95% confidence intervals. Relative to

link 2, link 1 had 5% (0.5%-10%) more overall bytes sent, a 2% (0.1%-3%) higher video stability

metric, and 0.1% (0.03%-0.25%) lower perceptual quality. The largest di↵erences were related to

rebu↵ers. Rebu↵ers are moments when video playback is interrupted because the client is unable to

download a piece of video from the server. Relative to link 2, link 1 had 20% (13-27%) more sessions

with rebu↵ers; there were four additional metrics related to rebu↵ers that also exhibited similar

di↵erences. All other metrics did not have statistically significant di↵erences. Notably, we did not

see di↵erences in most metrics we will discuss in our experiment below, including RTT, throughput,

video bitrate, cancelled starts, or packet retransmissions.

Tra�c on these links is not perfectly balanced, but it is clearly quite similar. Although the

pre-existing di↵erences in rebu↵ers is large, it is important to note that in absolute terms rebu↵ers
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Figure 3.5: Treatment e↵ects with 95% confidence intervals in our bitrate capping experiments.
Each row is a metric of interest, with the näıve A/B Test estimates, and TTE and spillovers as
estimated by the paired link experiment.

are rare. Given the similarity in other metrics, we believe they are caused by some other di↵erence,

such as the content served on the two links. Nevertheless, we carefully discuss our experimental

findings regarding rebu↵ers in Section 3.4.3, where our observations suggest this di↵erence in fact

causes us to underestimate the extent to which näıve A/B tests are biased.

Being able to run an experiment like this is an extremely unusual situation. Operators work

hard to avoid persistent congestion, so it is rare to have a pair of congested peering links. It is even

rarer for the tra�c to be balanced, and to be able to run separate experiments on each link. Netflix

has hundreds of locations and thousands of peering links worldwide, but only two were suitable for

this experiment.

3.4.2 Experiment design and analysis

We now describe the experiment we ran. Our goal was to estimate the e↵ects when most tra�c was

capped, the TTE, and compare this to the results of A/B tests. We also wanted to measure the

spillover of capped tra�c on uncapped tra�c.

To accomplish this, we ran a pair of A/B tests on the two links. On link 1, we allocated 95% of

flows to treatment (p = 0.95). On link 2, we allocated 5% to treatment. Computing the näıve ⌧̂(p)

estimator on sessions within each link allows us to calculate ⌧̂(0.95) and ⌧̂(0.05). By comparing the

mean of the 95% treatment sessions on link 1 to the 95% control sessions on link 2, we obtain an

approximate estimate of TTE. By comparing the mean of the 5% control sessions on link 1 to the

95% control sessions on link 2, we can obtain an approximate estimate of the spillover of capping.

With this design, we ran A/B tests simultaneously on the pair of links. The experiment ran for

five days, and included about fourteen million video sessions. We analyzed the experiment using

techniques described in Appendix 3.9.

In practice, network experiments are usually run in one of two settings. The first is an initial
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experiment with a relatively low level of initial treatment allocation, corresponding to the 5% A/B

test. The second is a long-term holdback test, where almost all tra�c is treated. We might näıvely

hope that by treating more tra�c, we would reduce congestion interference, and this corresponds to

the 95% A/B test.

This experiment may at first appear a bit odd. We are measuring the di↵erence in behavior when

almost all tra�c is capped and almost all is uncapped. This is an interesting quantity which tells

us a lot about the behavior of bitrate capping during congestion, but it is only an approximation

to TTE. The most straightforward way to estimate TTE in this network would be to cap 100% of

sessions on link 1 as treatment, and uncap 100% of sessions on link 2 as control. We could then

compare the means of each group to estimate TTE. However, if we did this, we would have no

instances where capped and uncapped tra�c shared a link, and we would be unable to compare the

results to an A/B test or measure spillover. We could run other experiments other times on the links

and compare the results, but we would be making strong assumptions about time invariance. This

would require careful experimental design and analysis, and one of our goals here was to validate

these designs.

Putting it another way: one of our goals is to test the SUTVA assumption, and check whether

treatment e↵ects as measured by A/B tests give good predictions of what happens when an algorithm

is widely deployed. If SUTVA holds, as in Figure 3.1a, spillover must be zero, and there must be no

di↵erence between the results of the two A/B tests and the approximate TTE we measure. If there

is any di↵erence between these quantities in our experiments, SUTVA cannot hold. Knowing that

SUTVA does not hold, we would not expect slightly increasing the fraction of capped tra�c to fix

this problem.

3.4.3 Results

Our results can be summarized as follows: bitrate capping substantially reduced congestion and

improved performance of uncapped tra�c, and yet the näıve estimator would have largely failed to

detect this.

Figure 3.5 reports our estimates of treatment e↵ects and 95% confidence intervals for several

important video streaming and network metrics. We report the results of 5% and 95% Näıve A/B

test results (i.e., ⌧̂(0.05) and ⌧̂(0.95)), as well as our estimate of approximate TTE and our estimate

of spillover. The näıve estimators are also wrong about the direction of improvement for minimum

RTT and average throughput, and the magnitude of average play delay and video bitrate. The

spillover is non-zero for most metrics.

Taking the example of average throughput, the two näıve A/B tests predicted a 5% decrease

in throughput, which näıvely suggests that capping increased congestion. However, the TTE tells

a very di↵erent story: that capping increased average throughput by 12%. Spillover shows that

capping also benefited other tra�c sharing the link: control tra�c on the mostly capped link had
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(a) Average throughput for the Saturday of the baseline

test period.

(b) Average throughput for the Saturday of the main ex-

periment.

Figure 3.6: Client-reported average throughput over time in the experiments, normalized to the
largest hourly average. During peak hours, the links become congested and throughput decreases.
Capping the majority of tra�c in (b) causes Link 1 to be less congested and have higher throughput
during most of the peak hours.

16% higher throughput than that on the mostly uncapped link.

These results can be explained by the way bitrate capping reduced congestion. There was

significantly less capped tra�c, so it took a larger number of users for the link to become congested.

Since user demand was the same on both links, congestion started later, ended earlier, and was less

severe on the majority-capped link. The näıve estimators were unable to detect this because both

capped and uncapped tra�c used the same congested link, and therefore saw similar performance.

This becomes clearer if we take a closer look at how the average throughput of sessions changes in

Figure 3.6b, which can be contrasted with how the behavior during the baseline period in Figure 3.6a.

We report the average of all client throughputs during each hour, normalized by the largest hourly

throughput. Throughput slowly decreases as overall tra�c increases throughout the day, and then

suddenly drops when the link becomes congested during peak hours. During the baseline period,

there is no di↵erence between throughputs for the two links. During the main experiment, the

mostly capped link remains uncongested for longer during peak hours, and has higher throughput

before and after the most heavily loaded hours. Despite this di↵erence, the capped and uncapped

tra�c on the same link have very similar performance.

In Figure 3.7, we show the four outcomes of throughput in the experiment: for capped and

uncapped tra�c as a function of allocation percentage. Both A/B tests confidently report that

capped tra�c reduces throughput relative to uncapped tra�c. However by capping the majority

of tra�c, we improve throughput for all tra�c using the link. This leads to an improvement as

measured by TTE, and a positive spillover.

If we considered just one of the A/B tests in isolation, we would falsely conclude that capping

tra�c makes throughput slightly worse. This is our “smoking gun”—the confusion arises because

treatment and control interfere with each other via congestion on the link.

We observed similar behavior for round-trip times in the experiment, as shown in Figure 3.8.

During congested hours, large queues build up at the congested link, which causes all packets in
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Figure 3.7: Average values of throughput in the cells in this experiment, with estimands of interest.

Figure 3.8: Average of minimum RTT in each connection, normalized to smallest cell value.

a session to be delayed, and leads to a sharp increase in the minimum RTT observed during each

session. However, because bitrate capping delayed the onset of congestion, the majority-capped link

(link 1) had empty queues for more time. The total treatment e↵ect was a 24% improvement in the

minimum RTT for the bitrate-capped sessions. The spillover was positive: capping tra�c improved

the minimum RTT by 27% for uncapped tra�c. Again this was incorrectly estimated by the näıve

A/B tests which both reported a 5% and 12% increase in minimum RTT.

We saw similar e↵ects in start play delay, which is the time it takes a video to start playing.

This is not surprising: improving throughput and reducing queueing delay should cause videos to

load faster. Neither A/B test predicted a significant decrease in start play delay, whereas there

was actually a 10% improvement in total treatment e↵ect. The spillover was also positive: capping

tra�c reduced play delay by 9% for both itself and for uncapped tra�c.

We measured a 33% reduction in video bitrate, with positive spillover. Capping the majority

of tra�c meant that the uncapped tra�c was able to take up more bandwidth and achieve higher

bitrates. It is surprising that despite the spillover, the two A/B tests still give reasonably good

estimates of TTE. We believe this is because the majority of the reduction in bitrate comes from

the artifical cap, which is applied independently of how other tra�c behaves. The spillover is small

relative to this e↵ect, but might explain the di↵erence between the 95% treatment e↵ect and TTE.

We observed the total treatment e↵ect for capping was a 10% increase in the fraction of sent
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Figure 3.9: Capping bitrate generally reduced the fraction of retransmitted bytes during congested
hours, but caused an increase in uncongested hours.

bytes that were retransmitted. This was driven by a 16% increase in the fraction of retransmitted

bytes during o↵-peak hours, and a 20% decrease during peak hours as shown in Figure 3.9. This may

seem surprising since bitrate capping reduced congestion, but in fact retransmits did not get worse.

Capping reduced the absolute number of bytes retransmitted during both during peak and o↵-peak

hours. The apparent increase in the percentage was caused by the absolute number of sent bytes

decreasing more than the absolute number of retransmitted bytes. Although odd, Netflix observed

similar behavior in a number of ISPs when removing bitrate capping.

Finally, we discuss the impact on rebu↵ers. Recall from Section 3.4.2 that we observed a 20%

di↵erence in rebu↵ers between the links from our baseline analysis prior to the experiment. Based

on our experiment, we believe bitrate capping had at least some impact on rebu↵ers: we see a 15%

decrease in rebu↵ers in the A/B tests within each link. We also measured that rebu↵ers for the

mostly capped tra�c in link 1 were 18% lower compared to the mostly uncapped tra�c in link 2.

Given that rebu↵er rates were not identical pre-experiment, we investigated further and measured

rebu↵er rates for both links during the month after we ran the experiment. We consistently found

a di↵erence: link 1 had on average 15% more rebu↵ers. In 70% of all hours, and in all but one peak

hour, link 1 had more rebu↵ers than link 2. While we are not certain of the underlying reason for

the di↵erence, we believe an 18% improvement is probably an underestimate of the improvement of

rebu↵ers. If we account for the underlying di↵erence between links 1 and 2, it is closer to a 20%-

30% improvement (rather than 15% improvement from the näıve estimate), suggesting congestion

interference.

We conclude by highlighting one reason our results may underestimate the amount of congestion
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interference. As discussed in Appendix 3.9, A/B test analysis usually assumes that sessions from

di↵erent users are statistically independent of each other. By estimating standard errors only on

data aggregated to the hourly level, our analysis e↵ectively makes a nearly worst-case assumption

that sessions in the same hour are perfectly correlated. This dramatically increases the size of the

confidence intervals we report for TTE and spillover.

3.5 Unbiased Experiments at Scale

We care about two di↵erent things when evaluating a new algorithm: testing it safely and accurately

measuring its performance. We want to experiment safely: if a new algorithm works so poorly that

it could cause material harm to the service, we want to detect it quickly and avoid deploying it

widely. We also want to be accurate: the goal of a new algorithm is usually to improve some metric,

and we need to accurately evaluate whether it succeeded.

A/B tests are used today with the assumption that they are both safe and accurate. If the

SUTVA assumption held, we can accurately estimate performance by running an A/B test on a very

small fraction of users. This allows us to predict the performance of an algorithm at scale, without

broadly deploying a harmful algorithm.

But in the worst case, congestion interference means that an A/B test is neither safe nor accurate.

An algorithm which performs well in an A/B test might cause significant harm when it is deployed

globally. But if an algorithm has marginal A/B test results and we do not deploy it globally, we

may miss out on extremely e↵ective algorithms.

This is a fundamental tradeo↵ with congestion interference, and what makes it so di�cult to

work with in practice. If we want to get a completely unbiased estimate of TTE, we need to allocate

100% of tra�c to a treatment. But for safety reasons we would never allocate 100% of tra�c to an

untested or poorly performing algorithm.

In this section, we provide some guidance on how to run experiments in practice. We will not

be able to completely resolve this tradeo↵, but we will describe two ways of measuring congestion

interference despite it.

Näıve A/B tests are biased in congested networks because of the combination of the A/B ex-

periment design itself, and the flawed causal interference used when interpreting the results of that

design. We will propose modifications to the A/B experiment design, and describe the improved

causal inference that these modifications allow. First, we propose slightly modifying existing de-

ployment practices to look for congestion interference. This is easy to do and helps build intuition

around when congestion interference exists, at the cost of time-related bias and rejecting e↵ective

algorithms. To counter this, we also propose running small-scale, targeted switchback experiments

to measure how a new algorithm behaves in a specific network.
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3.5.1 Measure deployed algorithms with event studies

When deploying an algorithm, it is important to get an accurate estimate of TTE. Optimistically,

an algorithm might perform better at scale than it did in small-scale evaluations. Perhaps when

an algorithm is run by a larger fraction of tra�c, it even further reduces congestion and improves

performance than it did in small-scale experiments. Accurately quantifying the improvement is

important to understanding its behavior and giving the team working on the algorithm the credit

they deserve.

Pessimistically, a new algorithm might perform worse at scale than in small-scale evaluations.

This might be a sign of some bug or unexpected behavior in the algorithm, and might suggest

it increases congestion or interferes with other tra�c on the internet. These are things that are

important to know about, so they can be addressed.

Primarily for safety reasons, engineers have developed sophisticated techniques for deploying new

algorithms. Engineers gradually deploy changes by slowly increasing the allocation fraction. They

continually monitor the system, and stop the deployment if performance degrades.

While engineers typically use gradual deployments to safeguard against failure, they could also

be used to conveniently measure the performance of a new algorithm and look for congestion in-

terference. A gradual deployment is e↵ectively a series of A/B tests with treatment allocations

ranging from 0% to 100%. At each allocation (p1, p2, etc...) we can observe the outcomes for

treatment and control. This gives us points on the graph of Figure 3.1, and we can use these values

to estimate the average treatment e↵ect ⌧(pi), the spillover s(pi), and a partial treatment e↵ect

⇢(pi) = µT (pi) � µC(0). Once the deployment is finished, we can compare 100% allocation to 0%

allocation and estimate TTE. If there is no interference, for all allocations i and j, the average treat-

ment e↵ects are the same ⌧(pi) = ⌧(pj), the partial treatment e↵ects are the same as the average

treatment e↵ects ⇢(pi) = ⌧(pi), and there is no spillover s(pi) = 0. We can use statistical tests to

check each of these relationships. If they do not hold, it could be a sign of congestion interference.

This is a type of observational design called an event study or an interrupted time series [114,

Ch. 11]. In an event study, we introduce some change, and compare the state of the system before

and after. This can be contrasted with a näıve A/B test, where we simultaneously compare units

with and without the change. In the gradual deployment setting, the change is the increase of

treatment allocation from pi to pi+1.

A major flaw with event studies is that it can be di�cult to attribute observed behavior to a

particular change. This is especially true because of seasonality: holidays, weekends, and political

events all tend to have di↵erent tra�c patterns than other times. Other teams or organizations

regularly make changes and deploy software which can a↵ect similar metrics. In the bitrate cap-

ping example, we had data from before and after deployment, but chose to run a more controlled

experiment to rule out the possibility of other causes for the behavior we observed.

Another flaw is that this process works well for safely deploying new algorithms, but it is heavily
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biased towards rejecting new algorithms. As an example, suppose we were testing a new algorithm

which behaved like the pacing lab experiment in Section 3.3.2. In a small allocation A/B test, this

algorithm would look worse: throughput would be down and loss would be una↵ected. Seeing this,

we might invest our time in other, more promising algorithms. We could slightly increase the size

of the allocation to look for interference, but throughput increased quite slowly with allocation size.

Even if we were able to detect this interference, it would look small. At this point, we might stop

the deployment before the algorithm is able to clearly improve performance.

Despite these flaws, event studies are quick and easy ways to get estimates of TTE and spillovers.

Large organizations continually deploy changes. When a deployment happens, it is easy to look at

the already-collected metrics and use these metrics to estimate TTE and spillovers. Doing so will

help build intuition around which algorithms could be a↵ected by congestion interference.

3.5.2 Measure algorithms in development with targeted switchbacks

Running an event study when deploying a new algorithm is a good way to measure congestion

interference and build intuition, but it is a bad way to experiment with new algorithms. We do

not want to deploy marginal algorithms to all tra�c, and so we may not invest in algorithms that

perform poorly in an A/B test. We may miss out on algorithms that have very di↵erent e↵ects when

widely deployed, like bitrate capping, pacing, or changing the number of TCP connections.

Because of this, we recommend running small targeted experiments in addition to small A/B

tests. A targeted experiment allocates a large fraction of tra�c within a specific network. The

network needs to be structured in such a way that the allocated tra�c does not interact with non-

allocated tra�c. In the paired link experiment in Section 3.4, we targeted an experiment to two

congested links. Using the results from the large fraction allocation, we can get a good estimate of

TTE and spillover in this network.

Targeting an experiment allows us to estimate TTE and spillover within a network, without

needing to run an algorithm on 100% of tra�c globally. It is standard practice in online platforms

[109, 155]. While we estimate TTE and spillover for a specific network instead of globally, this helps

give additional context to A/B test results and improves our understanding of how a new algorithm

behaves.

When running these targeted experiments, we recommend using switchback designs. A switchback

design divides time into intervals; a given interval is randomly assigned to be either treatment or

control. In a treatment interval, we treat almost all of the tra�c with the new algorithm. In a

control interval, almost all tra�c runs the old algorithm.

At a high level, switchback experiments are analyzed by comparing the treatment and control

intervals. While we could do 100% allocations in these intervals to get a good TTE estimate, we

recommend a smaller allocation (e.g. 90-99%) as in the paired link experiment. Doing so allows us to

additionally estimate spillover and the bias of A/B tests, which gives valuable insight into algorithm
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Figure 3.10: TTE as estimated by the paired link experiment, a switchback experiment, and an
event study.

behavior. The allocation size should be large enough to give statistically significant results, and can

be determined by a power calculation.

Like event studies, switchback experiments rely on the change between treatment and control

intervals being due to the treatment. However, the assumption is weaker: instead of needing no

other events to impact the outcome, a switchback requires that another event does not line up with

the treatment intervals.

A switchback experiment can also be vulnerable to carryover e↵ects [71, 26]. The presence of

the treatment algorithm can influence the initial conditions of the control algorithm and vice versa.

This can cause bias: imagine if we were to switch sessions between one and two parallel connections.

Until all sessions that used two parallel connections had completed, the sessions using one would

have lower throughput than necessary. If the system reacts poorly to switching between treatment

and control, this could also cause problems.

Carryover e↵ects can be mitigated with su�ciently long intervals. However, typically switchback

experiments make the worst-case assumption that all sessions in an interval are dependent (see

Appendix 3.9 for more details), which essentially means that each interval gives us one data point.

Increasing the length of intervals e↵ectively lowers the sample size of the experiment. For networking

algorithms, we believe a switch interval of one day is a reasonably conservative place to start.

Depending on the setting and the algorithm, it may be appropriate to use a shorter interval on the

order of hours or minutes.

3.5.3 Evaluating alternate designs

Our paired link experiment gives us the results of simultaneous, comparable experiments. We

previously analyzed that data to estimate TTE and spillovers. We now use it to evaluate event

studies and switchback designs, and show that these designs also accurately estimate TTE.

Having two simultaneous experiments allows us to ask what would have happened if we ran only

one experiment at a time. Our experiment in Section 3.4 ran from Wednesday through Sunday,
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(a) Throughput in a bitrate capping event study. Between

Thurs. and Fri., we apply 95% bitrate capping.

(b) Average throughput over time in a bitrate capping

switchback experiment. 95% of tra�c is capped on the

first and third and fifth day.

Figure 3.11: Alternate experiment designs used to estimate TTE.

giving us five possible days of data. We can emulate an event study by using data from the 5% link

for a few days and then switching to data from the 95% link, representing a deployment of bitrate

capping to 95% of tra�c. We can emulate a switchback experiment by switching between treatment

days and control days more frequently.

We first used baseline data to calibrate a switchback experiment. We ran an A/A test [114,

Ch. 19] on the paired links in the week following our main experiment: we applied the control to

both links and looked for underlying di↵erences. Using the data from the A/A test, we checked that

there would have been no false positives with any switchback design. This increases confidence that

there isn’t a reliable di↵erence between days in a way that would bias the experiment, and we would

recommend doing this in most cases.

We also used baseline data to calibrate an event study. We observed that there were false

positives in the majority of metrics with any event study in this experiment. We believe this is

because weekends tend to have di↵erent tra�c patterns than weekdays, and an event study must

either treat all the weekend days or all the weekdays together. This is an advantage of using a

switchback design.

For the event study, we switched to 95% bitrate capping between Thursday and Friday as shown

in Figure 3.11a. For the switchback, we alternated between treatment and control, and randomly

started with treatment. This assignment is shown in Figure 3.11b. All other ways of assigning

treatment to days yielded similar results, provided at least one day was in treatment and at least

one day was in control.

Figure 3.11b shows the average throughput for this example switchback design, which can then

be compared with the throughput in the paired link experiment in Figure 3.6. Note that because we

are switching between experiments, the clear di↵erence in throughput in the paired link time series

is much harder to see in the switchback. This highlights the power of running statistical analyses

on switchback data.

Our goal with this approach was to use the clean results from our paired link experiment to
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demonstrate the power of switchback experiments and event studies. If we had actually run these

experiments, the results may have been slightly di↵erent. For instance, tra�c from both links likely

shares some bottlenecks in the provider network during o↵peak hours, so it is possible that our results

during o↵peak hours are biased by congestion interference. However the congestion interference we

detect is largely because of the behavior during congested hours on isolated congested links.

3.5.4 Results

The analysis approach for these experiments is identical to the paired link experiment, with the

caveat that we only use the subset of the data corresponding to each experiment. We describe the

details in Appendix 3.9.

Figure 3.10 shows the values of TTE estimated by the switchback experiment, event study, and

paired link experiment. Both alternate experiments give reasonably good estimates of TTE. The

switchback experiment results are very close, and the confidence intervals for its estimates include

every TTE from the paired link experiment. It has larger confidence intervals because it includes

half as much data. We expect that running the experiment for longer would have reduced the size

of the confidence intervals.

The event study gives reasonably accurate estimates of TTE for most metrics, but is biased for

throughput, cancelled starts, and % retransmitted bytes. As we observed in analyzing the baseline

data, we believe this is because of seasonality issues: weekends tend to have di↵erent behavior than

weekdays, and so it is more di�cult to attribute the change to the treatment. This is one of the

advantages of switchback experiments: randomly choosing intervals over many days helps avoid

certain seasonality e↵ects. Despite this, given that event studies are so easy to incorporate into

existing workflows, we still recommend cautiously using them to estimate TTE and spillovers when

deploying new algorithms.

3.6 Related Work

A/B tests are heavily used in industry research. There recently have been a number of published

A/B tests comparing congestion control algorithms, including BBR [96, 36, 161, 34, 33], COPA

[138], and Swift [117]. There have also been many other published A/B tests for other networking

algorithms. These include work on initial congestion windows [53], TCP’s loss recovery [63], PRR

[52], QUIC [120, 104], failure recovery [119], and ABR algorithms [92, 127, 193]. We do not know

how congestion interference a↵ected these results.

We are aware of a few published results that include event studies: Dropbox and Verizon both

used them to evaluate BBRv1 [96, 161], and Google reported one for Timely in [132]. In Section 3.5,

we show how to design and analyze these event studies to measure TTE and spillover, and describe

how switchback experiments give more reliable results.
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Experiments on router performance, especially those related to bu↵er sizing [21, 166, 20], nat-

urally must treat all tra�c using the router. Because of this, they tend to have good estimates of

total treatment e↵ects.

Recent studies of social network and marketplace platforms have led to improved understanding of

causal inference under interference (e.g., [125, 10, 14, 18, 23]), both through novel experimental design

(e.g., [184, 102, 16, 26, 71, 88, 37, 155]) and improved inferential methodology (e.g., [14, 19, 18, 177]).

We believe our work is the first to show that these issues a↵ect networking experiments and bias

their results at scale.

Switchback designs found recent favor as an approach to testing matching and dispatch policies in

ridesharing and food delivery platforms, though they have also been used in applications as varied as

agriculture [37, 109, 26, 148, 139]. We are unaware of any prior usage of switchbacks in networking.

We have heard some folklore predictions from the networking community that these sort of issues

may exist. The only citeable version of this we know of is in [181].

Finally, our work is informed by the long line of work on fairness in networking. Unfairness

between Cubic and BBR, which we describe in Section 3.3, was previously reported by [158, 94,

189, 190, 30, 93, 182, 183]. Unfairness between parallel connections was first observed by [17].

Unfairness between paced and unpaced Reno flows was shown by [2, 191]. Fairness work is about

how algorithms ought to share resources, and usually shows that algorithms are unfair in simulations

or in a lab [28, 118, 13, 158, 94, 51, 190, 30, 93, 105, 182, 183]. Our work does not address how

algorithms should share resources, but rather how to avoid experimental bias when they do. One

way of interpreting our work is as a way to measure unfairness between treatment and control at

scale, in production networks.

3.7 Conclusion

Congestion interference biases the results of networking A/B tests at scale, and it is our responsibility

as a community to be aware of this phenomenon. Our results suggest that we should be skeptical

when interpreting the results of näıve A/B tests, and consider whether alternate experiment designs

should be used instead.

As discussed in Section 3.5, experimenters can make small changes to existing deployment pro-

cesses to begin to measure congestion interference, and use targeted switchbacks to further improve

these measurements. We should be especially wary of interference when an algorithm changes tra�c

volumes, tries to control congestion, or is similar to algorithms discussed in the past fairness research

in Section 3.6.

We would love to see more work in networking evaluated with congestion interference in mind,

either with published switchback experiments, or at least event studies run during a gradual deploy-

ment. This is especially true for high consequence proposals, such as new internet standards.
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On the research side, there is much more work to be done on evaluating algorithms at scale

in congested networks. We encourage further studies to measure bias, in di↵erent networks and

with di↵erent algorithms. We think it would be valuable to design new experiments and analyses

specifically for congested networks. The bias of näıve A/B tests is both a cautionary tale and a

significant opportunity for innovation. The internet surely works better thanks to A/B tests of

algorithms run in congested networks. We hope that new algorithms tested with better experiments

will help improve it even further.

3.8 Ethics

While our experiments involve live tra�c running on a large video streaming service, our work is

not human subjects research, and we have no way to identify the individual users of the platform.

We only have access to performance-related data. We ran experiments which improved behavior

during congestion, but they did so at the cost of reducing video quality. Netflix’s customers have

the ability to opt out of experiments, if they choose to.

3.9 Appendix: Analysis of experimental data

In this appendix we describe our general approach to analysis of data from experiments at scale,

and how we apply this approach in the context of the experiments reported in Sections 3.4 and 3.5.

For the duration of the appendix, we consider data for a fixed representative metric collected on a

per-session basis (e.g., average throughput).

In our experiments units are video sessions, and we let Ai denote the treatment condition of

session i, where Ai = 1 denotes treatment and Ai = 0 denotes control. Let Yi denote the observed

outcome on session i. Let hi 2 {1, . . . , 24} denote the hour of session i. Our first step in analysis

is to aggregate data at the hourly level: for each hour t = 1, . . . , 24 and each treatment condition

A = 0, 1, we compute:

Zt(A) =

P
i Yi hi=t,Ai=AP
i hi=t,Ai=A

.

This is the average outcome for sessions in treatment condition A during hour t.

Next, we use a regression approach to estimate the treatment e↵ect [68, Ch 9], using the following

model specification:

Zt(A) = c+ �0A+ �t + "i, for all t, A.

Here t = 1, . . . , 24 and A = 0, 1; �0 is the coe�cient on the treatment indicator; each �t is a fixed

e↵ect to control for hour-of-day heterogeneity; c is an intercept term; and "i is the error term. We fit

this model using least squares linear regression, and estimate confidence intervals using Newey-West



CHAPTER 3. UNBIASED EXPERIMENTS IN CONGESTED NETWORKS 54

Figure 3.12: Comparison of treatment e↵ect sizes and confidence intervals when aggregating by hour
or by account.

robust standard errors [136] with a lag of two hours. This is a common approach in econometrics to

account for autocorrelation between successive hours, and heteroskedasticity in the error terms "i.

We use hats to denote the corresponding estimates; in particular, �̂0 is the estimated coe�cient on

the treatment indicator, and thus an estimator for the average treatment e↵ect.

We note that the approach we take here—where we aggregate data to the hourly level—essentially

makes a worst case assumption that sessions within a given hour and treatment condition are perfectly

correlated with each other. This is a very conservative assumption, that we feel only strengthens

the case in our paper. Though conservative, this is current practice in analysis of switchback exper-

iments in other industries [109]. If we were to analyze the results using the standard account-level

standard errors, we would get much tighter confidence intervals as shown in Figure 3.12. Correcting

standard error estimates to properly estimate dependencies between sessions remains an active area

of investigation.

We now describe how we apply this approach to our experiments in Sections 3.4 and 3.5.

3.9.1 Application to paired link experiment

In Section 3.4, sessions on link 1 were randomized 95% to treatment and 5% to control; and sessions

on link 2 were randomized 5% to treatment and 95% to control.

We carry out four separate analyses on this data. First, to compute the approximate estimate
dTTE for TTE, we consider the 95% of all sessions in the treatment group on link 1 as our treatment

sessions (Ai = 1); and the 95% of all sessions in the control group on link 2 as our control sessions
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(Ai = 0). We ignore all other sessions. We then follow the analysis workflow above, and set dTTE = �̂0

from the resulting fitted regression.

To estimate spillover, we use only the 5% control sessions on link 1 and the 95% control sessions

on link 2. We set Ai = 1 for the control sessions on link 1, and Ai = 0 on link 2. We compute

bs(0.95) = �̂0 from the resulting fitted regression.

Finally we compute two “näıve” estimates using the di↵erence in means estimator (3.1) from

Section 3.2. In particular, for p = 0.95, we use only the sessions on link 1: we consider all sessions

in the treatment group on link 1 as our treatment sessions (Ai = 1), and all sessions in the control

group on link 1 as our control sessions (Ai = 0). All sessions on link 2 are ignored. An analogous

approach is carried out for p = 0.05 using the treatment and control sessions on link 2 (ignoring all

sessions on link 1), to compute ⌧̂(0.05). We aggregate to the account level, not the hour level, as is

standard when analyzing A/B tests.

Finally, all reported values are normalized to make them more interpretable. In particular, we

divide all estimates by the average across all control sessions on link 2 (where 95% of the tra�c was

control). This approach ensures all reported values are a relative di↵erence measured against the

same global control condition.

3.9.2 Application to switchback experiments and event studies

In Section 3.5, we analyzed a switchback experiment and an event study that was emulated using

the data from the paired link experiment. This analysis was carried out as follows. For the three

days chosen to be treatment intervals, we define all treatment sessions on link 1 to have Ai = 1,

and ignore all other sessions. For the two days chosen to be control intervals, we define all control

sessions on link 2 to have Ai = 0, and ignore all other sessions. We then proceed with the analysis

workflow above, and report �̂0 as our emulated estimate of TTE.



Chapter 4

Updating the Theory of Bu↵er

Sizing

4.1 Introduction

Internet routers have packet bu↵ers which reduce packet loss during times of congestion. Sizing the

router bu↵er correctly is important: if a router bu↵er is too small, it can cause high packet loss and

link under-utilization. If a bu↵er is too large, packets may have to wait an unnecessarily long time

in the bu↵er during congested periods, often up to hundreds of milliseconds. While an operator can

reduce the operational size of a router bu↵er, the maximum size of a router bu↵er is decided by the

router manufacturer, and the operator typically configures the router to use all the available bu↵ers.

Without clear guidance about how big a bu↵er needs to be, manufacturers tend to oversize bu↵ers

and operators tend to configure larger bu↵ers than necessary, leading to increased cost and delay.

This paper revisits two widely used rules of thumb for sizing router bu↵ers in the internet. The

two rules cover two di↵erent cases:

Case 1: When a network carries a single TCP Reno flow. Van Jacobson observed in 1990

[98] that a bottleneck link carrying a single TCP Reno flow requires a router bu↵er of size B � BDP,

the bandwidth-delay product, in order to keep the link fully utilized.

Case 2: When a network carries multiple TCP Reno flows. Appenzeller, Keslassy, and

McKeown argued in 2004 [8] that a bottleneck link carrying n long-lived TCP Reno flows requires

a bu↵er of size B � BDP/
p
n in order to keep the link highly utilized.

Much has changed since these rules were first introduced, and it is not clear whether these rules

still apply in modern networks. The behavior of TCP Reno has changed; most notably when Rate-

Halving [86, 160] and PRR [52] were introduced. New types of congestion control have become

widespread, such as Cubic [78] (default in Linux, Android, and MacOS), and more recently BBR

56
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(deployed by Google for YouTube) [33] and BBRv2 [35]. Given that the analysis underlying both

bu↵er sizing rules depends on the specific way in which TCP Reno halves the congestion window

when losses are detected, there is no particular reason for either rule to still hold in today’s internet.

Existing rules of thumb help us pick the bu↵er size to achieve full link utilization, and do not

predict behavior if the bu↵er is made smaller. Thus, theory falls short for recent congestion control

algorithms (e.g. BBR and BBRv2) which no longer aim to keep a bottleneck link running at 100%

utilization. Instead, they rely on short periods of under-utilization to keep queueing delay low and

to estimate propagation delay.

In light of these changes, this paper examines bu↵er sizing for modern TCP algorithms. We show

that the two rules still allow TCP Reno to fully utilize a link, despite changes due to Rate-Halving

and PRR. We show that TCP Cubic, Scalable TCP, and BBR allows us to reduce bu↵er sizes.

We extend our analysis for the case when link utilization is less than 100%, and we show that

very small bu↵ers can still allow high (but not 100%) link utilization. More generally, this paper

sheds new light on how to size bu↵ers for a given congestion control algorithm and desired link

utilization, under a very broad set of conditions. In doing so, we also show how future congestion

control algorithms can be designed to further reduce bu↵er requirements.

Throughout the paper, we will illustrate and validate our results using measurements drawn from

a physical network in our lab. This is challenging: while Linux can capture per-packet measurements

in the end-host TCP stack, it is not normally possible to capture the full time series of bu↵er

occupancy at the switch. Our measurement setup uses a P4-programmable Tofino switch which we

program to report the precise time evolution of its bu↵er, to approximately 1 nanosecond resolution.

This lets us precisely compare the evolution of the congestion window and the bu↵er size and validate

our theoretical results. We start in Section 4.2 by describing this experimental setup.

In Section 4.3, we revisit case #1: a single TCP flow. Specifically, we show theoretically and

experimentally that despite the introduction of PRR to TCP Reno, the B � BDP result still holds.

We also show that with TCP Cubic we can reduce the bu↵er size to 0.4BDP for a single flow, and

for BBR we can reduce it further to 0.25BDP and still achieve full link utilization. We also describe

how link utilization behaves when bu↵ers are below these values.

Next, in Section 4.4, we examine case #2: multiple TCP flows. We prove that algorithms which

respond to full queues (via losses or marks) create standing queues with particular properties during

times of congestion. We show that the square root of n rule is a consequence of this behavior: if

queues are always close to full for any bu↵er size, then intuitively the bu↵ers can be shrunk without

impacting utilization. Another, perhaps surprising, consequence is that link utilization is not a

“cli↵” function. We show that if the bu↵er is slightly too small for full utilization, then utilization

still remains high. Specifically, we show that even with very small bu↵ers, the utilization percent is

at least ⌦(1 � 1/
p
n). We also show that design choices in BBR allow for a square root of n rule

essentially without assumptions.
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In Section 4.5 we support our results with fine-grained measurements from lab experiments. We

show that the square root of n rule holds in our experiment, and show how loss-based algorithms keep

queues full during congestion. We verify the square root of n result for BBR, and find experimentally

that a BDP/n rule may be more accurate, allowing for even smaller bu↵ers. We show that bu↵er

sizes depend on how flows synchronize and whether they are fair. We describe how to check the

assumptions in our theorems, and show that they hold in the lab. We also caution that enabling

ECN can increase synchronization in certain cases, resulting in a larger required bu↵er, and show

lab results to support our analysis.

In Section 4.6, we discuss measurements of large-scale production networks which show that

RTTs are persistently elevated during times of congestion [124, 61, 45]. Our results explain why

congestion control algorithms create these persistently full queues, and suggest that these queues

can be made smaller. We also discuss the implications of our results on other situations when it

may be more di�cult to measure congestion.

In Section 4.7 we make recommendations to network operators who are interested in running

bu↵er sizing experiments, and describe how our results can be used to easily design these experiments.

We also give recommendations to designers of new congestion control algorithms who would like to

ensure small bu↵er requirements. We discuss related work in Section 4.8 and conclude in Section 4.9.

Contributions: The main contributions of this paper are:

1. Single flow case: A simple proof of TCP’s required bu↵er size, applicable to the latest versions

of TCP Reno, as well as other algorithms including Cubic, Scalable TCP, and BBR.

2. Multiple flow case: A new, more general model of how bu↵er size is impacted by fairness and

the amount of worst-case packet drops, and square root of n-style rules for TCP Reno and

other algorithms.

3. A better understanding of how congestion control algorithms interact with bu↵ers, including

how utilization depends on bu↵er size, how algorithms can reduce bu↵er requirements, and

how current congestion measurement techniques rely on certain algorithmic behavior.

4. A new measurement platform allowing precise observation of TCP and the router bu↵er.

4.2 Experiment Methodology

Throughout the paper, we will use measurements from our physical testbed to illustrate and validate

our results. We have built a platform on programmable hardware which allows us to easily run

experiments where TCP flows share a congested link, and observe how TCP and queues behave at

a packet-by-packet level.
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Min. Bu↵er Size Additional assumptions beyond Sec-
tion 4.3.3

Citation

BDP Reno, silence after loss [98, 185]
BDP Reno [47], Section 4.3.5
(1/b� 1)BDP Multiplicative decrease by b, silence after loss [83, 121, 130]
(1/b� 1)BDP Multiplicative decrease by b Section 4.3.5
3
7BDP Cubic [121], Section 4.3.5
1
7BDP Scalable TCP Section 4.3.5
1
4BDP BBR during the probe bandwidth phase, with loss Section 4.3.5
⇥(BDP/

p
n) Reno, windows are i.i.d. uniform random variables [8]

O(BDP/
p
n)

p
n+O(n2

/BDP ) almost fair flows see loss Theorem 7
O(BDP/

p
n) Almost fair BBR flows in probe bandwidth phase Theorem 9

O(p ·BDP� n+ np) A p fraction of fair flows see losses [47]
O(s ·BDP/n) At most s+ n

2
/BDP almost fair flows see loss. Section 4.4.6

O(1) Reno, bounded window size, Poisson pacing [60]
O(1)

p
n + O(n2

/BDP ) almost fair flows see loss, uti-
lization is ⌦(1� 1/

p
n)

Theorem 8

Table 4.1: Minimum bu↵er sizes required for full link utilization, our new results highlighted in gray.

While working on this paper, we were frequently ba✏ed by experimental results that didn’t

match our understanding of TCP. Almost always, when we dug into the measurements, we found

that TCP’s actual behavior did not match our understanding. We hope that by including our

measurements, we can make TCP’s behavior (and our results) more understandable.

Setup Our test network consists of two servers with 32 2.4Ghz cores and 32 GB of RAM each,

connected by a Barefoot Tofino switch and use up to 2 MB of bu↵ers. The servers run Linux 5.5.0,

each with an Intel 82599ES 10Gb/s NIC. Each NIC is connected to a port of a 6.5Tb/s Barefoot

Tofino switch via 100G to 4⇥ 10Gb/s breakout cables. The sender server is connected to the Tofino

with two 10G cables. The interfaces are bonded and packets are equally split between them, which

ensures that congestion happens at the switch (otherwise we only see congestion at the sender NIC).

We set MTUs to 9000 bytes so the servers can sustain a 10Gb/s rate. We add 1ms of delay at the

sender using Linux’s tra�c controller tc, and use iperf3 to generate TCP tra�c. We used congestion

control algorithms available in Linux 5.5.0, including TCP Reno, Cubic, BBR (v1), and Scalable

TCP. We also used Google’s alpha release of BBR2 [35].

Measuring TCP Since 2017, Linux has had a tracing system which reports the congestion window,

smoothed RTT, and other important information for each received acknowledgement [84]. We used

this system to observe TCP’s behavior in our experiments, and have created a small open source

tool to make them easier to work with: https://github.com/brucespang/tcp probe.

Measuring Bu↵ers It is usually hard to precisely measure a switch’s bu↵er occupancy over time.

We wrote a P4 program running on the Barefoot Tofino switch, to measure (and report) the time

series of the packet bu↵er occupancy. Each time the switch receives a packet it sends a small

https://github.com/brucespang/tcp_probe
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UDP packet (often called a “postcard”) to a collector which includes the current bu↵er occupancy

and some packet metadata. At the collector, we record these postcards and match them with the

TCP trace samples. Our ability to measure the complete time-series of a bu↵er is not novel (e.g.

[81, 20, 112, 39, 29]). We believe this sort of fine-grained measurement should be a standard part of

any TCP experiment.

Datasets and Source Code We have released our P4 code, infrastructure for collecting TCP

traces, and the traces we collected online at https://github.com/brucespang/ifip21-bu↵er-sizing.

4.3 Sizing bu↵ers for a single flow

Since the 1990s, it has been known that a network carrying a single TCP Reno flow requires a

bu↵er size of one BDP in order to keep the bottleneck link fully utilized. However, TCP has

changed dramatically since then, with Proportional Rate Reduction [52] and new congestion control

algorithms like Cubic [78] and BBR [33]. It is not clear whether the bu↵er requirements for a single

TCP flow have also changed.

In this section, we revisit the classic rule of thumb that a bu↵er should be at least one BDP

for a single TCP connection. Some of the results in this section have been shown by prior authors,

and we revisit their results to verify that they still hold experimentally, and as a warm-up for later

sections. We find that despite the changes to the Linux kernel, the BDP rule still holds for TCP

Reno. We find that a BDP is an overestimate of the bu↵ering required for Cubic and BBR.

More specifically, we will

1. Show that the BDP rule still holds for a modern implementation of TCP Reno.

2. Show that Cubic requires a bu↵er of only 3
7BDP and BBR requires a bu↵er of only 1

4BDP.

3. Show how link utilization changes when bu↵ers are smaller than required for 100% utilization.

4. Show that BBR2 does not fully utilize a link, but instead aims for high link utilization.

5. Show how the usual proof of the BDP rule depends on outdated TCP behavior, and give a

simpler and more general proof.

4.3.1 The original BDP rule

The original BDP rule, attributed to Jacobson [98] and Villamizar and Song [185], states that for a

single TCP Reno flow to fully utilize a link with a drop-tail bu↵er, the bu↵er must be at least the

capacity of the link C times the RTT. This is the bandwidth delay product, BDP = C ·RTT .

Fact (BDP Rule). TCP Reno fully utilizes a link if and only if B � BDP.

https://github.com/brucespang/ifip21-buffer-sizing%20
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Figure 4.1: Per-packet window size (from kernel) and queue depth (from switch), for one TCP Reno
flow with a BDP sized bu↵er. PRR keeps sending packets after a loss, but the queue still drains.

Most proofs of the BDP rule [98, 8] rely on TCP halving its window size W on a loss, and then

waiting to send another packet until it receives W/2 acknowledgements so that the number of packets

in-flight drops below the new window size. But this is not how modern TCP implementations work.

For example, TCP Cubic decreases its window by less than a half on a loss. Even TCP Reno no

longer stops sending packets on a loss. Instead it behaves according to Proportional Rate Reduction

(PRR) [52], introduced by Dukkipati et al. in 2011, which supplanted Rate-Halving, proposed by

Hoe [86] in 1995 and as an RFC by Mathis et al. [160] in 1999. Both algorithms gradually lower

the size of the window after receiving a loss. When PRR decides to decrease the congestion window

from w to w
0, it sends a new packet for every w/w

0 packets acknowledged. For TCP Reno, this

means a new packet is sent for every two packets acknowledged. Most deployments of TCP Reno

now use PRR.

4.3.2 Does the BDP rule still hold experimentally?

Our measurement infrastructure allows us to observe the behavior of PRR after a loss, which is

shown in Figure 4.1 for TCP Reno (with PRR) and bu↵er size B = BDP. The figure is zoomed in

to show what happens when a packet is dropped by the switch at about the 1ms marker. The TCP

source detects the loss about 1.5ms later, and begins to gradually decrease its window over the next

2ms. After 2ms (about 2 RTTs), the window size has been halved and the queue is nearly empty.

Without PRR, TCP Reno stops sending packets as soon as the drop is detected and remains

silent until the window is reduced by half. Even though TCP with PRR never stops sending, the

queue almost completely drains, which suggests that a BDP worth of bu↵ering is still necessary. In

what follows, we prove this.

4.3.3 Technical Preliminaries

In order to prove that B � BDP is still necessary with PRR, we need an argument that does not

rely on TCP stopping sending after a loss. To this end, we set up some definitions that will help us

prove our results throughout the paper. These are standard assumptions in the TCP and the bu↵er

sizing literature, and apply to the common case when n TCP flows share a drop-tail queue.

Throughout the paper, we will refer to a TCP flow in theorem statements, and use it to mean
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the following set of assumptions and definitions, plus commonly known TCP behavior.

Definition. A packet is in-flight if it has been sent, but the acknowledgement has not yet been

received by the sender. Let W (t) be the aggregate window, or the number of in-flight packets at time

t.

For the case of n flows sharing a link, let wi(t) be the window of flow i, i.e. the number of

in-flight packets for flow i at time t. Therefore the aggregate window is W (t) =
Pn

i=1 wi(t).

Throughout the paper, we will heavily use the following behavior of TCP Reno: when TCP

Reno successfully sends a packet and receives an acknowledgement, it increases its window from wi

to wi+1. When it detects a congestion signal (e.g. a dropped packet or an ECN mark), it decreases

the window from wi to wi/2.

Note that our definition of the window of flow i is the number of in-flight packets, which is not

necessarily the same as the congestion window (cwnd). For example, when TCP Reno reduces its

congestion window in response to a loss, the number of in-flight packets may briefly exceed the

congestion window.

Definition. The RTT at time t is the time taken from when a packet is sent at time t until we

receive its acknowledgement. Our results assume that all flows have the same RTT.

Definition. The sending rate of flow i at time t is xi(t) = wi(t)/RTT (t). The aggregate sending

rate is x(t) = W (t)/RTT (t).

Links have queues to store packets before they are sent. We will also call them bu↵ers. Packets

are put into these queues as they arrive, and are later sent from the link. Queues have a length at

any point in time, which we call the queue length, and a maximum number of packets they can fit

before they need to drop packets, which we call the maximum queue length or bu↵er size.

Definition. Let Q(t) be the length of the queue at time t.

A link with capacity C sends one packet from the queue every C
�1 seconds, provided the queue

is not empty. While some links, such as wireless links, have variable capacity, we only consider fixed

data-rate links that send a packet every C
�1 seconds.

We will care about the utilization of these links.

Definition. For a link with departure rate D(t) and capacity C, the link utilization is µ(t) = D(t)/C

A work-conserving queue will be fully utilized at time t if and only if Q(t) > 0. While it may

seem counter-intuitive, dropping packets does not necessarily reduce link utilization. If packets are

dropped from the tail of the queue (i.e. an arriving packet doesn’t fit, so it is dropped), then packets

are lost before the bottleneck link. If a work-conserving link always has a non-empty queue, it is

fully utilized no matter how many packets are dropped.
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Definition. The bandwidth-delay product of a flow crossing a link of capacity C with round-trip

time RTT is BDP = C ·RTT.

We will use the following standard assumption about how the size of the queue relates to the

number of in-flight packets [8, 47, 121, 7, 188].

Assumption 2. Let B be the maximum bu↵er size, t be some time, and W (t) be the number of

in-flight packets at time t. We assume that at time t, the queue size is

Q(t) =

8
>>><

>>>:

0 if W (t)  BDP

W (t)�BDP if 0 < W (t) < B +BDP

B if W (t) � B +BDP

Our results use this assumption heavily, and so it merits some discussion. It is a strong assump-

tion, designed to let us compare our results to existing work. Consider the queue at some time t

when there are W (t) packets in-flight. Over the previous RTT, if the bottleneck link is fully-utilized

it will (by definition of BDP) send exactly one BDP worth of packets spaced C
�1 seconds apart.

Our assumption is essentially that the congestion control algorithm will closely match this behavior;

i.e. it will also send packets spaced C
�1 seconds apart. In the case of TCP, this is the ACK clocking

mechanism; packets sent from the bottleneck queue lead to a stream of ACKs at the sender, spaced

C
�1 seconds apart, which pace out the sent packets.

Assumption 2 holds for the results in this paper because of ACK clocking, and is validated by our

experimental results. If we were to model new congestion control algorithms, we would need to first

check that this assumption holds. If, to pick an extreme example, a new congestion control algorithm

required the sender to remain silent for a long time and then suddenly send a burst of packets, then

the assumption would not hold. Fortunately, this is not how currently deployed congestion control

algorithms work.

We could relax this assumption if needed, provided we kept some relationship between queue

length Q(t) and BDP. As an example, we observed some amount of variability in the queue depth

in our measurements (e.g. Figure 4.1), which we believe is due to packet bursts from the sender. We

could model this variability by assuming that (1� ")(W (t)�BDP)  Q(t)  (1+ ")(W (t)�BDP)

for some constant " > 0. We could then derive similar results. For instance, the B � BDP rule

for TCP Reno would become B � (1 + ")BDP. We have not carried this parameter through our

results since it makes our theorems harder to understand and compare with existing work, and " = 0

captures the general behavior we observe in our measurements.

With this assumption, we can prove the following well-known lemma which is key to showing all

the bu↵er sizing results in this paper.

Lemma 3. For TCP flows sharing a link at time t, the utilization µ(t) = min(W (t)/BDP, 1).
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Proof. If W (t) > BDP, then applying Assumption 2 we get Q(t) = min(W (t) � BDP, B) > 0.

We assume queues are work conserving, so µ(t) = 1. If W (t)  BDP then during RTT t we send

W (t) packets at a rate of x(t) = W (t)/RTT. By Assumption 2, Q(t) = 0, so the departure rate

D(t) = x(t). Therefore the utilization is µ(t) = D(t)/C = W (t)/BDP.

Lemma 3 is simultaneously obvious and a bit surprising. In words, if the number of in-flight

packets ever falls below a BDP, then we will lose utilization. One might imagine that if the queue

is full and the arrival rate is slightly less than C (which happens if W (t) is slightly less than a

BDP), the queue would only drain a little bit. But by Assumption 2 (and perhaps because of the

way TCP’s in-flight mechanism works), this means the sender will only send at a rate of at most

W (t)/RTT packets, which is slightly less than C.

Finally, we will need the following assumption about when losses happen.

Assumption 4 (Loss). Let B be the maximum bu↵er size. We assume that TCP loses packets at

time t if and only if Q(t) � B, which by Assumption 2 is equivalent to W (t) � BDP+B.

Lemma 3 is easiest to use when a congestion control algorithm decreases its window in response to

a full queue (e.g. a lost or marked packet), since Assumption 4 gives us a direct relationship between

the bu↵er size and the number of in-flight packets upon a loss (or mark). In our experiments, Reno,

Cubic, BBR, and Scalable TCP all decrease their windows in response to a loss or mark. Modeling

other congestion control algorithms might require additional assumptions to determine a lower bound

on the number of in-flight packets.

4.3.4 Settings Where Our Assumptions Do Not Hold

Our results only apply when our assumptions hold. These assumptions are used by existing work

on bu↵er sizing, so we are confident that our results are comparable to existing work.

Our results rely on the assumption that if the bottleneck queue is always non-empty, it will

send exactly BDP packets every RTT. This is a simple consequence of a work-conserving queue

and a constant egress line-rate. If instead we wanted to model a packet scheduling algorithm at the

bottleneck link (e.g. strict precedence service, where our flows are low precedence), then we would

need to determine how many packets are sent when the queue is non-empty. We could substitute

that value into Assumption 2 and most of our results would apply.

There are other interesting settings for bu↵er sizing, especially links using AQM (e.g. [65, 140,

121, 137]). We believe that our techniques would help prove bu↵er sizing results for AQM policies,

given good models of how di↵erent AQM policies interact with TCP. We believe this would be a

very interesting direction for future work.
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4.3.5 Rules of thumb for Reno, Cubic, BBR, and Scalable TCP

Lemma 3 makes it easy to prove rules of thumb for bu↵er sizing. As a demonstration, here we use

it to prove rules for TCP Reno and other common congestion control algorithms.

Our strategy will be to find the minimum window size and apply Lemma 3 to measure link

utilization. Loss based algorithms only decrease their windows on a loss, so we will use Assumption 4

(or a similar assumption for BBR) to relate the link utilization to the bu↵er size.

Reno: Fix some time t when Reno experiences a loss and let s be the next RTT when W (s) =

W (t)/2. By Assumption 4, W (s) � 1
2 (BDP + B). So the utilization of the link is µ(s) �

min
�
1
2

�
1 + B

BDP

�
, 1
�
.

If we would like the link to be fully utilized (i.e. µ(s) = 1), this result requires that B � BDP.

For smaller bu↵ers, every 1% reduction in utilization results in a 2% reduction in required bu↵er

size. So for 90% utilization, we only need B � 0.8BDP. Provided our assumptions were to hold

without a bu↵er, Reno would still have a link utilization of at least C/2.

This result was shown for full utilization by [98], and for full utilization using these assumptions

by [47]. We are unaware of prior results for less than full utilization.

Decrease by � on a loss: Suppose a new congestion control algorithm sets its window toW 0 = �W

on a loss, and never decreased its congestion window otherwise. Let t be the time just before a loss,

and s the time when W (s) = �W (t). In this case, we would have W (t) � BDP+B, and by Lemma 3,

µ(s) � min (� (1 +B/BDP) , 1).

For full link utilization µ(s) = 1, we would need B > (��1 � 1)BDP. This matches observations

made by [83, 121, 130].

Cubic: On a loss, Cubic decreases its window by constant factor “beta cubic,” in Linux this constant

is 717/1024 ⇠ 7/10. Using the above result, Cubic requires B � (10�/7 � 1)BDP. For full link

utilization � = 1, Cubic requires a bu↵er of size 3
7BDP. This result was shown by [121]. For 90%

link utilization, Cubic requires a smaller bu↵er of size 0.28BDP. Without a bu↵er, Cubic gets a

utilization of 70%.

Scalable: On a loss, Scalable TCP decreases its window to 7/8. It therefore requires a bu↵er size

of B � (8/7� � 1)BDP For full link utilization, this requires B � 1
7BDP. For 90% utilization, it

requires a very small bu↵er of just B � 0.03BDP. Without a bu↵er, Scalable gets a utilization of

87.5%. We do not know of any prior publications of this result, but it is an easy corollary.

BBR: BBR (v1) alternates between phases where it probes for bandwidth and probes for the

minimum RTT. We will focus on the required bu↵er size for full utilization during the bandwidth

probing phase. BBR may behave di↵erently in other settings, but this model characterizes the

behavior we see in our experiments.

While probing for bandwidth, BBR cycles through a series of pacing rates which limit the number

of packets in flight. It picks a pacing rate of R and sends at 5
4R for an RTT, 3

4R for an RTT, and

R for six RTTs. In our experiments, BBR encounters loss during the 5
4R phase. After seeing loss,
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Figure 4.2: Queue occupancy versus time for one Reno, Cubic, BBR, and Scalable TCP flow with
B = BDP. The bu↵er is (just) large enough for Reno to keep the queue non-empty and the link
fully utilized. The bu↵er is oversized for Cubic, BBR, and Scalable TCP which keeps the queue
persistently occupied.

it decreases its rate to 3
4R in response [31, Section 4.3.4].

Suppose BBR picks a pacing rate of R ⇠ C. When a loss occurs, the number of packets in-flight

is at least BDP + B by Assumption 4. During the next RTT, the bottleneck queue drains at a

rate of C � 3
4C = 1

4C. After one RTT, the number of packets in-flight decreases by 1
4C · RTT so

W (s) = 3
4BDP + B. By Lemma 3, µ(s) = min

�
3
4 +B/BDP, 1

�
. For full link utilization, we need

B � 1
4BDP. For 90% link utilization, we need a bu↵er of size B � 0.15BDP.

We do not know of prior publications of this result. Recently there has been work showing that

BBR has higher loss and is unfair to other algorithms in smaller bu↵ers [158, 32, 30, 93, 190]. Our

results instead focus only on the bu↵er size needed to keep the link fully utilized.

BBRv2: Google is developing a second version of BBR, and recently released an alpha implemen-

tation. We want to apply our analysis to BBRv2 as soon as the algorithm is described in su�cient

detail for us to model it correctly (we assume a technical report or paper will describe the alpha

code). We do, however, include its behavior in our experimental setup using the alpha code. What

we know so far is that instead of keeping the queue full and responding to losses (like all other

algorithms we tested), BBRv2 keeps the queue close to empty and responds quickly to increases in

delay. One consequence of this is that BBRv2 keeps the link highly utilized, but not quite 100%.

Hence, bu↵er sizing for BBRv2 is very di↵erent than for a loss-based algorithm, and BBRv2 is

able to get good performance across a range of bu↵er sizes, while keeping the link utilization a little

shy of 100%. This motivates us, later in this paper, to study bu↵er sizes that achieve high link

utilization, but not quite 100%.

4.3.6 Experimental validation

Measurements from our physical network confirm the bu↵er sizing rules for TCP Reno, Cubic,

BBR, and Scalable TCP in Section 4.3.5. For example, Figure 4.2 shows the queue occupancy, at

the moment the window is decreased. As expected, if we set the bu↵er size to a BDP of 165 packets,
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(a) Reno (b) Cubic (c) BBR (d) BBRv2

Figure 4.3: Link utilization for one TCP flow across a range of congestion control algorithms and
bu↵er sizes.

TCP Reno allows the queue to drain by a full BDP and (almost) go empty. TCP Cubic allows the

queue to drain by about 60-70%. BBR allows the queue to drain by about 25%. Scalable TCP

drains the queue to within the range 11-25% of the BDP. The ranges we observe are consistent with

the theory in Section 4.3.5.

The queue depth variability in our measurements is because the sending kernel transmits bursts.

Except for BBR, which uses its own pacing algorithm to reduce burstiness.

We measure link utilization in our experiments by recording iperf’s aggregate throughput every

10ms, and report the 1st percentile value. Figure 4.3 shows the link utilization as a function of bu↵er

size. Utilization is well-predicted by our models above a queue depth of about twenty packets. Below

twenty packets utilization falls o↵ quickly, which appears to be caused by burstiness (bursts cause

the queue size to vary by about twenty packets); i.e., burstiness can cause loss with a smaller window

than Assumption 4. Note that BBR, which has very little burstiness, has no utilization “cli↵” below

20 packets.

4.4 Sizing bu↵ers for multiple flows

In [8], Appenzeller et al. argue that when n TCP Reno flows share a connection, and n is large, a

much smaller bu↵er of BDP/
p
n is su�cient to keep the bottleneck link highly utilized. In particular,

they prove the following theorem.

Theorem 5 (Square root of n rule). If for all times t, the windows of n TCP Reno flows are

independent uniform random variables in the range
�
1± 1

3

�
BDP+B

n , and if B � BDP/
p
n, then in

the limit as n ! 1, P (µ(t) < 1)  0.02.

Appenzeller et al. show experimental evidence that the square root of n rule holds for TCP

Reno, and the result has held up in later experiments [20]. However, Theorem 5 makes the strong

assumptions that: (1) flows are TCP Reno, and (2) windows are independent uniform random

variables in the range [ 23
BDP+B

n ,
4
3
BDP+B

n ]. The rule does not apply to modern congestion control

algorithms, and because of the strong assumptions it is not obvious whether a new or modified
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(a) Bu↵er size: 1BDP. (b) Bu↵er size: 0.5BDP. (c) Bu↵er size: 0.25BDP.

Figure 4.4: Queue depth distributions for TCP Reno with decreasing bu↵er sizes. As the number of
flows increases, the queue stays close to its maximum value (the right-most dotted line). The square
root of n rule predicts that queues will not fall below a certain threshold, which is shaded in grey.
The non-shaded region between them shows the required bu↵er size for our experiments: they are a
good estimate, and hold as bu↵er sizes decrease.

algorithm will satisfy it.

In this section, we show that the square root of n result holds more broadly than for TCP Reno.

We start, in Section 4.4.1, by showing that with much weaker assumptions, the aggregate window

stays high when n TCP Reno flows share a link. This is depicted visually in Figure 4.4, showing how

the queue depth distribution “concentrates” with increasing n. The square root of n result for TCP

Reno (and other multiplicative-decrease algorithms) is an immediate consequence of this, which we

show in Section 4.4.2. Basically, if the aggregate window stays above BDP + B � BDP/
p
n, and

B > BDP/
p
n, then the queue never goes empty. More broadly, we will use this e↵ect to analyze

other congestion control algorithms.

We also prove results in Section 4.4.3 for the required bu↵er size when link utilization is below

100%. In particular, we show that utilization is ⌦(1 � 1/
p
n) even with a constant size bu↵er. As

a perhaps surprising example, if more than 1,000 flows share a link, utilization is at least 97% even

with a constant size bu↵er. For the same link utilization, the square root of n result of [20] requires

a bu↵er of size BDP/
p
n.

Finally, in Section 4.4.4 we extend our results to other congestion control algorithms. We show

that because BBR incorporates some randomness by design, we are able to prove a square root of

n result with only an assumption about fairness. Using these ideas, we propose a modification for

multiplicative decrease algorithms that provably guarantees that a small bu↵er is su�cient, provided

fairness holds.

4.4.1 How Reno keeps links and queues full

TCP Reno tends to keep links and bu↵ers full, especially as more flows use a network. Figure 4.4

shows the distribution of queue depths in our experiments. As the number of flows increases, TCP

Reno keeps the queue depth distribution high. In this section, we will prove this.



CHAPTER 4. UPDATING THE THEORY OF BUFFER SIZING 69

In order to prove some sort of square root of n rule, we will need some concept of how the

aggregate window is split across multiple flows. If windows are extremely imbalanced, we cannot

hope for a square root of n rule. For instance, if the aggregate window is made up of only one flow,

we are in the setting of the single flow case in Section 4.3 and cannot expect a square root of n

rule. Furthermore, in our experiments in Section 4.5, we find that the required bu↵er size gradually

increases as flows become less fair.

To deal with this dependence on fairness in our theoretical results, we will define a concept of

almost fairness for TCP windows. Almost fairness has a parameter �, which relates to how far

the window sizes are from equal. We will prove our results using this parameter, which gives us a

convenient relationship between unfairness and bu↵er size.

Definition (�-almost fair). Consider n TCP flows sharing a link. Let wi(t) be the number of

in-flight packets for flow i at time t. Let � � 1. Flow i is �-almost fair if for all time t,

��1BDP

n
 wi(t)  �

BDP

n
. (4.1)

�-almost fairness is a property of a congestion control algorithm. The closer an algorithm keeps

its windows to equal, the smaller value of � it will have. This may or may not be desirable behavior

for a congestion control algorithm, but we will be able to prove smaller bu↵er requirements for

smaller values of �. We can easily measure and calibrate this parameter in our experiments, and

we report the results of this in Section 4.5.6. We are unaware of prior uses of this fairness metric.

We could use other ways of measuring fairness, for instance Jain’s fairness index [99], but �-almost

fairness is convenient for our proofs and easy to measure in our experiments.

It may feel somewhat unnatural that we have not defined �-almost fairness as wi(t)  �(BDP+

B)/n, since the aggregate window is at most BDP+B and is divided among n flows. However, we

are thinking about the regime where B = O(BDP), and can account for the dependence on B by

increasing the value of � in our definition. Doing so makes our results significantly easier to prove

and interpret, and the cost of a slightly looser bound on bu↵er size.

With this definition, we can prove our main result which relates the aggregate window after a

loss to bu↵er size, fairness, and the number of flows. We will spend the rest of the section discussing

its interpretation.

Theorem 6. Consider n �-almost fair TCP Reno flows sharing a link with window size wi(t) � 2.

Fix two times 0  t1  t2. If at most n2

�BDP +
p
n flows decrease their windows between t1 and t2,

then for all t1  t  t2

W (t) � BDP+B � �BDPp
n

.

Proof. See Appendix 4.11.

We have stated Theorem 6 for TCP Reno to make the theorem statements more direct, but as in
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Section 4.3, it is easy to adapt to other congestion control algorithms. Suppose a congestion control

algorithm decreases by �wi on a loss and otherwise increases by at least ↵. We would need to add

a condition to Theorem 6 that the smallest window wi � ↵/(1� �). This a↵ects Equation (4.4) in

the proof, but the overall result does not change.

4.4.2 Bu↵er size required for full link utilization

With Theorem 6, we can easily find the minimum bu↵er size required for full link utilization.

Theorem 7. Consider n �-almost fair TCP Reno flows sharing a link with window size wi(t) � 2.

Fix two times 0  t1  t2. If at most n2

�BDP +
p
n flows decrease their windows between t1 and t2,

and

B � �BDPp
n

then µ(t) � 1 for all t1  t  t2.

The key condition in Theorem 6 is that at most n2

�BDP +
p
n decrease their in-flight packets. This

expression is unusual, and deserves some explanation.

The first term n2

�BDP is related to the number of fair flows which must decrease windows for the

aggregate window to decrease. Suppose only one TCP Reno flow with a fair window size of BDP/n

sees a loss and halves its window. If BDP/n < n�1, then the remaining flows will each increase their

windows by one and the aggregate window will increase despite the loss. Appendix 4.13 formalizes

this intuition.

The second term
p
n is the number of additional flows which decrease their in-flight packets over

and above this minimum, and measures the amount of synchronization. In Section 4.5, we show that

this is the number of additional flows which decrease their windows in our experiments. Our results

also gracefully degrade as the amount of synchronization increases. We will discuss these and more

modifications to Theorem 6 in Section 4.4.6

Theorem 7 helps us determine the correct value of n to use when sizing a bu↵er. Prior work has

noted that Theorem 5 assumes all flows are active and contributing to the bu↵er size, whereas in

practice they might not [130, 165, 187], making it di�cult to size the bu↵er correctly. Consider, for

example, an application that starts and stops every second; should its flows be counted, or only if it

recently had packets in the bu↵er? Theorem 7 uses the number of flows which see packet loss during

an RTT, allowing us to size the bu↵er accordingly.

4.4.3 Link utilization when n TCP Reno flows share a link

Prior bu↵er sizing work has looked for the smallest bu↵er required for full link utilization. Using

Theorem 6, we can also understand what happens if the bu↵er becomes even smaller.
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Theorem 8. Consider n �-almost fair TCP Reno flows sharing a link with window size wi(t) � 2.

Fix two times 0  t1  t2. If at most n2

�BDP +
p
n flows decrease their windows between t1 and t2,

then for all t1  t  t2 and B � 0

µ(t) � 1� �p
n
.

This suggests that even with very small bu↵ers, as n grows TCP Reno approaches full link

utilization quite quickly, at a rate of O(1/
p
n). For instance if n = 10, 000 and � = 2, then the link

will always be at least 98% utilized—independent of bu↵er size.

This is a worst-case bound on instantaneous utilization, not on average utilization. This bounds

the minimum utilization immediately after a loss. As TCP increases its window after a loss, utiliza-

tion will increase and the longer term utilization will be higher.

Intuitively, the square root of n result says that TCP Reno will not decrease the aggregate

window too far on a loss. If the bu↵er is fairly large, this means the bu↵er will tend to remain very

full. If the bu↵er is very small, this means that link utilization will remain high.

4.4.4 BBR guarantees a square root of n rule

Our square root of n results so far require assumptions about how TCP flows behave. For example,

Theorem 6, assumes only a limited number of flows decrease their windows in each RTT.

We can also prove a square root of n rule for BBR (v1), based on how it probes for available

bandwidth. If BBR detects a loss, while probing for bandwidth, it randomly decides whether or not

a flow should decrease its window, which in turn desynchronizes the flows su�ciently for the square

root of n rule to hold. Our proof requires no assumption on the number of flows seeing a loss at the

same time. Essentially by incorporating some randomness, BBR is able to guarantee a square root

of n result with minimal assumptions.

Theorem 9. Consider n �-almost fair BBR flows in the “probe bandwidth” phase sharing a link.

Fix two times 0  t1  t2. If

B >
�BDPp

2n

p
ln 1/�, (4.2)

then P(µ(s) < 1)  � for all t1  t  t2.

Proof. See Appendix 4.12.

We believe Theorem 9 could be much stronger. Figure 4.6b shows that BBR’s queue depths

are much more tightly concentrated than for other algorithms, and more tightly concentrated than

Theorem 9. While the number of flows experiencing a loss may be about the same as with TCP Reno,

fewer of them decrease their windows in BBR. We see no reason why a bu↵er size of O(BDP/n)

would not be more appropriate for BBR, but have not been able to prove or disprove it.

Finally, there are still many open questions about BBR’s bu↵er behavior for future work. We

have only considered BBRv1. We show BBRv2’s experimental behavior in Figure 4.6c, but have
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not analyzed it. We do not yet have a rule for BBR in the case when it decreases its window size

when there is no packet loss. The main obstacle is that we do not observe this behavior in our

experimental setup.

4.4.5 Guaranteeing a square root of n rule for a modified TCP Reno

Inspired by BBR, imagine that we added randomness to TCP Reno to reduce its bu↵er requirements

(and increases its link utilization with small bu↵ers). We are not arguing that TCP Reno should

necessarily be changed; we are conducting a thought experiment to see how much it would reduce

bu↵er requirements.

When our imagined algorithm detects a loss, it halves its window size w(t) with probability

p = 1/w(t). This could be done either by randomly ignoring lost packets, or by randomly marking

packets with a suitable ECN policy. Let’s assume that this does not interfere with �-almost fairness,

so that ��1BDP/n  w(t)  �BDP/n, and p  1/(��1BDP/n). The number of flows that

randomly decide to decrease their windows in the same RTT is a sum of independent random

variables, and we can use the following simple Cherno↵ bound to estimate the sum.

Lemma 10. Let Di(t) be independent and identically distributed Bernoulli random variables, with

EDi = p  1
��1BDP/n . Let D(t) =

Pn
i=1 Di(t) Then

P
✓
D(t) >

n
2

��1BDP
+

p
n

◆
 exp(�1/2).

Proof. See Appendix 4.14

This bound essentially meets the conditions for Theorem 6, with the small caveat that we would

need to adapt the proof to using ��1 instead of �. Doing so would give us a square root of n result

without needing to make assumptions about which flows see a loss.

4.4.6 Desynchronized flows reduce bu↵er requirements

Before Theorem 6, we knew the required bu↵er size for two extreme cases. When all the flows

are perfectly synchronized, they lose packets simultaneously and we need a BDP of bu↵ering. At

the other extreme, when flows are not synchronized, Theorem 5 tells us that the bu↵er size can be

decreased by a factor of
p
n.

We can extend Theorem 6 to the intermediate case when n2

�BDP + s flows see a loss. In this case

W (t) � BDP+B � s
�BDP

n
. (4.3)

In other words, Equation 4.3 tells us:
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(a) Bu↵er size required for full link utilization across all

our experiments.

(b) Utilization as a function of number of flows for a 20

packet bu↵er.

Figure 4.5: Bu↵er size and link utilizations behave according to a square root of n rule in our
experiments

• If flows are slightly but not perfectly synchronized, then the bu↵er size can be made smaller

than BDP. For some small constant c, if only s = cn extra flows lose packets, then the required

bu↵er size is cBDP which is below a BDP.

• If only a constant number of additional flows s see each loss, then a bu↵er of size O(BDP/n)

is possible. This is tantalizing, because, of course BDP/n < BDP/
p
n. For example, if

10,000 flows share a link, and s = 1, then we can further reduce the square root of n bu↵er

requirement by another 100-fold. To be clear, our experiments do not exhibit this degree

of desynchronization, but we see it as an exciting opportunity for a new congestion control

algorithm.

4.5 Experiments with the square root of n rule

We evaluated Theorem 6 in our physical network, using our per-packet measurement infrastructure

described in Section 4.2. Our experiments show that Theorem 6 holds in our network, and build

intuition on which factors impact bu↵er sizes.

4.5.1 The square root of n rule holds when algorithms respond to full

queues.

The square root of n rule holds in our experiments for multiple congestion control algorithms (TCP

Reno, Cubic, Scalable TCP, and BBR), despite the introduction of PRR. Figure 4.5a shows the

minimum queue depth required for full link utilization in our experiments. Each experiment lasted

one thousand RTTs. We measured minimum utilization by recording iperf’s aggregate throughput

over ten consecutive RTTs. We report the 1st percentile throughput.

In each experiment we found the smallest bu↵er size for which 99% of packets (or more) ex-

perienced a non-empty queue. The bu↵er requirement follows a square-root of n rule for TCP

Reno. Other congestion control algorithms have similar bu↵er requirements for a large numbers
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(a) Cubic (b) BBR (c) BBRv2

Figure 4.6: Queue depth distribution for various congestion control algorithms and bu↵er size
0.8BDP. The non-shaded area corresponds to a bu↵er size of 2BDP/

p
n, which tends to over-

estimate the required bu↵er.

of flows (and smaller bu↵er requirements for smaller numbers of flows). Theorem 7 requires that

B � �BDP/
p
n, and our experimental results suggest it is an overestimate.

Theorem 8 predicts that utilization will grow at a rate of 1/
p
n when the bu↵er is too small for

full link utilization. Figure 4.5b shows the utilization as a function of the number of flows for a 20

packet bu↵er. Utilization increases at a rate of 1/
p
n. It is slightly underpredicted by Theorem 8,

and again we believe that the constants may be slightly looser than necessary.

4.5.2 Algorithms keep queues full, as predicted by the square root of n

rule.

The square root of n rule is primarily used to predict the minimum required bu↵er to keep the

link utilized, as in Theorem 7. But Theorem 5 also predicts how far the queue occupancy will

deviate from full if the bu↵er is larger than we need. Figure 4.4 shows the distribution of queue

occupancy for di↵erent numbers of flows (and di↵erent bu↵er sizes). For example, with B = BDP

in Figure 4.4(a), the distribution of queue occupancy narrows as the number of flows increase. The

shaded area to the left of the distribution is unused (and therefore unnecessary) bu↵er; we could

use a smaller bu↵er and shift the distribution to the left. The remaining graphs show this as we

decrease the bu↵er size.

We have seen that non-Reno congestion control algorithms also follow a square root of n rule in

our experiments, and Figure 4.6 shows the distribution of queue depths for these algorithms. As

with Reno, the distributions concentrate tightly around a full bu↵er.

4.5.3 The square root of n rule holds with non-uniform window distribu-

tions.

Figure 4.7 shows the distribution of windows for 16 TCP Reno flows over one second, when B =

BDP. The distributions are clearly not uniform (and we observe windows in the ranges of 0-10 and
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Figure 4.7: Distribution of window sizes mea-
sured for each received acknowledgement for 16
TCP Reno flows over one thousand RTTs with a
BDP sized bu↵er.

Figure 4.8: Queue occupancy over time for 16
TCP Reno flows sharing a queue. Packets are
dropped or marked when the queue exceeds one
BDP. In the ECN trace, more flows are marked
when the queue is exceeded and flows become
more synchronized.

40-60 packets, outside the 3
4 and 5

4 range). This suggests that the uniform window size assumption

in [8] does not hold in practice.

Figure 4.7 also shows the degree to which flows are treated fairly, in the sense that the the average

window size for each flow is close to (BDP+B)/n. It is not surprising that they are similar, since

one of the goals of a congestion control algorithm is to fairly share a bottleneck link. However, we

can see that the flows do not have identical window size distributions, with some average window

sizes two to three times larger than the fair share of (BDP+B)/n, and some half the size. This is

why we have defined �-almost fairness.

4.5.4 The square root of n rule does not hold when losses are synchro-

nized.

Theorem 6 requires flows to be desynchronized, in that not too many flows can respond to loss at

the same time. This is a necessary requirement and we would not expect the square root of n rule to

hold when flows are synchronized. In the extreme, suppose all flows experience a loss between times

t1 and t2. In the worst case W (t2) =
Pn

i=1
1
2wi(t1) =

1
2W (t1). As pointed out in prior work [8, 47],

we are back in the same situation as for one flow and require a BDP of bu↵ering.

While larger numbers of TCP Reno flows tend to be less synchronized in our experiments, this is

not the case for all algorithms or in all settings. As a stark illustration, we describe an experiment

in which synchronization caused a larger bu↵er requirement. Our experiment compared dropping

packets to a specific way of ECN marking: we dropped or marked packets whenever the queue depth

exceeded a fixed threshold.

We ran this experiment for sixteen TCP Reno flows. Figure 4.8 shows the queue depth over

time during this experiment, comparing TCP Reno with ECN (blue line) and with dropped packets

(orange line). It is clear that with ECN marking, the queue depth fluctuates much more, hence

requiring a much larger bu↵er. With ECN the queue regularly overshot its marking threshold, so

more packets were marked in the same RTT, which led to a synchronized reduction in window size.
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Figure 4.9: Windows and queue depths over time for four TCP Reno flows sharing a link. A loss for
a flow with an unfairly large window results in the same queue depth decrease as for two fair flows,
and half as large a decrease as a loss for all flows.

We would like to emphasize that this experiment should not be taken as a general statement about

bu↵er sizing with ECN, since ECN is often used in conjunction with an AQM policy (e.g. RED [65]).

However, ECN is used in this way for BBRv2 [35], DCTCP [7], and in other settings [174, 146].

4.5.5 The square root of n result does not hold when flows are too unfair.

Theorem 6 requires windows to be almost fair, and this is a necessary requirement. Figure 4.9

illustrates how unfairness between flows can a↵ect the required bu↵er size. Consider the trace

of four TCP Reno flows sharing a link, particularly the large red window and the two smaller

purple windows (superimposed). When the small purple windows experience losses simultaneously

at 725ms, both halve their windows from 80 to 40 packets and the bu↵er occupancy drops by 65

packets. Yet, on its own, the larger red window causes the bu↵er to drop by the same amount when

it halves its window size – this is because it starts from a larger size. In general, bigger windows

have a disproportionately larger e↵ect on the bu↵er occupancy. In the extreme, imagine one flow

used all of the link capacity, and the remaining n � 1 flows used none. Such extreme unfairness

means we are back in the single flow setting, and we can not do better than the BDP rule.

4.5.6 Checking theorem conditions in our experiments.

Theorem 6 depends on the value of �-almost fairness, and the number of flows which see a loss in a

RTT. These are not well known values, and so we use our experimental setup to measure them and

give a sense of their magnitude.

First, we will check whether the number of additional flows which see a loss is about
p
n. This

is a strong assumption in general, but it appears to be a loose upper bound in our experiments.

We ran a number of experiments with a bu↵er size of 1 BDP and increasing numbers of TCP Reno

flows. We split each experiment into RTTs, and for each RTT where there was one loss, counted

the number of flows which saw a loss in each RTT. Figure 4.10 shows the average number of flows

that observed a loss in that RTT. The bound n2

2BDP +
p
n of Theorem 6 is also plotted. It appears

to be a good estimate for a small number of flows, and an overestimate for larger numbers of flows.
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Figure 4.10: Fraction of TCP Reno flows which see a loss during loss events, for various numbers of
simultaneous flows. Each point shows the mean number of flows seeing a loss during each RTT, and
the line shows the bound of n2

2BDP +
p
n from Theorem 6.

(a) Varying numbers of flows (b) Varying bu↵er size in packets

Figure 4.11: Worst-case �-almost fairness in our experiments.

Next, we check the values of �-almost fairness in our experiment. To measure �-almost fairness,

we find the 1st and 99th percentile window sizes for all flows in an experiment. We calculate BDP/n

from the experiment parameters. We then find the smallest value of � so that the definition of �-

almost fair is satisfied between the 1st and 99th percentile window sizes.

We first look at how � depends on the number of flows. Figure 4.11a shows that both ��1 and

� slowly increase with the number of flows. We next look at how changing the bu↵er size impacts

fairness. We look at all experiments with sixteen flows, to avoid confounding with the dependence

on the number of flows. We find that ��1 slowly decreases with bu↵er size, and approaches 0.5.

For Cubic, Reno, and Scalable, � is about 4. For BBR, it is about 10. � does not depend on the

bu↵er size for any of these algorithms.

4.6 Supporting evidence from real-world measurements

Square root of n results hold because the occupancy of router queues ”concentrates” during times

of congestion, leading to persistently occupied standing queues. This phenomenon has been widely

observed outside of bu↵er sizing work. For example, Lee et al. [123] report that operating a link

at 100% utilization resulted in a persistent 30-50ms increase in queueing delay. In [175], Täht and

Reed report on an outage where they observed a 400ms increase in RTTs. In [38], Chandrasekaran
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et al. report 20ms increases in RTTs over congested links in the internet core.

Recent measurement work uses these increases in RTT to measure congestion. Luckie et al.

propose TSLP [124], which measures RTTs periodically and uses a persistent increase in RTT as an

indicator of congestion. Their figures show that congestion can elevate minimum RTTs by tens of

milliseconds. In [61], Fanou et al. use TSLP to measure congestion in the African IXP substrate,

and find links with elevated minimum RTTs during congestion. Sundaresan et al. classify flows

with a tightly concentrated RTT during slow-start as flows experiencing congestion [173]. In [45],

Dhamdhere et al. measure the minimum RTT over a period of five and fifteen minutes to identify

links experiencing persistent congestion.

In [166], Spang et al. report on bu↵er experiments run at Netflix. They show that large bu↵ers

can increase RTT for all tra�c sharing a link. They run an experiment where a subset of Netflix

tra�c is randomly assigned to two routers, one with a 500MB bu↵er and one with a 50MB bu↵er.

They observe that the minimum RTT increase by hundreds of milliseconds for all flows; and gets

worse with larger bu↵er sizes. This suggests the queue remains relatively full for the entire hour.

Our results explain why congestion control algorithms that respond to full queues (via losses or

marks) create standing queues during times of congestion. Our experiments in Section 4.5.2 show

the same persistent standing queues, especially as the number of flows increases.

All of the measurements described above show evidence of concentration. While they do not

prove that the concentration is of the order BDP/
p
n, our results suggest that all these bu↵ers

could be shrunk without impacting link utilization. Our results also suggest that link utilization

would remain high in these cases, even with a very small bu↵er.

It is natural to ask whether concentration relies on current congestion control algorithms, and

whether a new congestion control algorithm might break it. For instance, if a few large sources

of tra�c switched to BBR, would congestion on the internet look very di↵erent? Our results in

Section 4.4, especially the ones for BBR, suggest it would not. But we cannot rule out some other,

future congestion control algorithm with very small queues during congestion.

Finally, our results suggest intriguingly that there might be ”dark congestion” in the internet,

which current measurement techniques that look for persistent standing queues cannot detect. There

might be routers that cause a large amount of synchronization, for instance by marking packets as

in Section 4.5.4. This would lead to wildly varying queue occupancy, making it hard to detect

congestion.

4.7 Recommendations

4.7.1 Recommendations for Operators

The networking community as a whole, both industry and academia, knows surprisingly little about

bu↵er size requirements, and tends to oversize bu↵ers in the WAN. We believe there might be big
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benefits to network operators if they run experiments to determine the required bu↵er size in their

network. Consider, for example, the di↵erence in required values for a network with a BDP of

100ms⇥ 100Gb/s = 1010 bits carrying 10,000 TCP Reno flows. If we adopt the single flow rule, we

need a 10Gbit bu↵er; if Theorem 6 applies we might need only 100Mbit bu↵ers. BBR only needs

a 100Mbit bu↵er, and BBRv2 might require even less. If we were happy with an instantaneous

utilization higher than 99%, the bu↵er could be reduced a few tens of packets. This could make it

possible to use simpler, cheaper routers with on-chip bu↵ering.

We should point out that this paper focuses exclusively on the relationship between sizing a

bu↵er and link utilization. Bu↵ers can also have a large impact on application performance [47,

46, 87, 166, 21, 15], and it is important to consider these factors. More experiments would benefit

operators (and the broader networking community) by improving our understanding of how bu↵ers

impact application performance.

Theorem 7 may be easy to verify in practice. If end hosts can be instrumented, one could

measure the total decrease in windows over a short period to estimate the required bu↵er size.

With fine-grained metrics from the switch, it would be possible to count the number of unique flows

dropped during congestion events (e.g. by forwarding all lost packets to a collector), estimating

the bandwidth of these flows (e.g. using coarse netflow statistics), and size the bu↵er accordingly.

This could be done manually, or automated and be done periodically. If only loss statistics are

available, it would be possible to estimate the number of flows which see simultaneous loss using

simple probability calculations. Then Equation (4.3) could be used to size the bu↵er. Note that it is

not necessary to measure the total number of flows to apply our results, which avoids the problems

pointed out in [130, 165, 187].

4.7.2 Recommendations for Congestion Control Algorithm Designers

To someone working on congestion control, this paper may feel a bit backwards. As argued by [128],

instead of sizing bu↵ers based on unintended artifacts of TCP Reno (i.e. as in the single flow rule),

we could instead design congestion control algorithms that work well for all queue sizes. If we want

full link utilization and a small bu↵er, the congestion control algorithm only needs to prevent the

aggregate window from dropping below a BDP.

In Section 4.3, we showed that smaller reductions in window size lead to smaller bu↵er require-

ments. In Section 4.4.4 and Section 4.4.5, we showed how adding a small amount of randomness to

a congestion control algorithm can reduce its bu↵er requirements. We encourage congestion control

algorithm designers to use these techniques to reduce bu↵er requirements. Our experimental results

suggest that BBRv2 is a good first step in this direction. With a bit of work, new algorithms can

be more friendly to bu↵ers, and the people operating them.
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4.8 Related Work

There have been many papers published about bu↵er sizing in the past twenty years. We will focus

on work most closely related to our results, for broader surveys see [186, 130].

The rule of thumb for sizing router bu↵ers with a single TCP Reno flow is attributed to [98, 185].

The rule was extended to multiplicative-decrease algorithms by [83, 121]. The proof of the BDP rule

by [47] did not depend on silence after a loss. We believe our discussion of PRR and BBR are new.

For multiple flows [8] introduced the square root of n rule, which was tested experimentally by

[20] in the Level 3 backbone. [47] described a rule incorporating a model of loss, and includes similar

style of analysis as Theorem 6. [188] show that number of flows which see a loss is important for

whether a square root of n rule applies.

TCP’s tendency to observe loss simultaneously and synchronize has been observed in simulation

since the 1980s [82, 196, 197, 198, 66, 103]. More recently, [121] observed synchronization using

physical hardware. Although we only observe a small amount of synchronization in our experiments,

our bu↵er size results can handle larger amounts. We think it is an interesting open question why

it seemed to be more common in the 80s and 90s, and why it only sometimes appears today.

In the early 2010s, [69] revisited the question of bu↵er sizing, observing that the oversized bu↵ers

in cable modems cause massive delays and standing queues during congestion, often referred to as

bu↵erbloat. Bu↵erbloat usually refers to home networks where a small numbers of flows typically

share the bu↵er, while we are more focused on backbone routers with a large number of flows; but

we view this work as complimentary. We discuss how our results are related to standing queues in

Section 4.6, albeit for larger numbers of flows, and our results may shed light on other parts of the

Internet where “Dark Bu↵ers” lurk.

Our work focuses on the relationship between bu↵er size and link utilization. A separate, very

interesting line of work has explored other impacts of bu↵er sizing. [47, 46] discuss impacts on TCP

such as increased loss and throughput variability. A recent line of work [158, 32, 30, 93, 190] has

shown that BBR can have large loss and worse fairness in small bu↵ers. [87] describes a test-bed

study showing that bu↵er sizing can cause a significant change in application QoE. [166] reports

on production bu↵er sizing experiments at Netflix, and show that bu↵er size has a large impact

on video performance. [21] reports on bu↵er experiments at Facebook, including impacts on flow

completion time. [15] shows an example where shrinking the bu↵er size of a home WiFi router can

degrade video performance.

4.9 Conclusion

The main takeaways from this paper are new results on bu↵er sizing; in particular, a better un-

derstanding of the relationship between link utilization and bu↵er size, and how congestion control

algorithms can impact this relationship. Prior work suggested that bu↵ers can be reduced by a factor
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of square root n, o↵ering dramatic bu↵er reductions in networks carrying many flows. However, the

result required TCP Reno, did not make clear how we determine n, or what happens when windows

are not independent. Our results clarify that n is the number of flows that reduce their window size

in the same RTT, removes the need for independence, and holds for a broader class of congestion

control algorithms. Our results explore what happens when bu↵ers are sized too small for full link

utilization. Our results make it easier to run bu↵er sizing experiments, which should give much

more confidence that the results apply broadly.

There remains work to be done. For instance, we assumed that RTTs are the same for all flows,

yet clearly this is not true in practice. Variance among RTTs should only reduce synchronization,

and hence further reduce the bu↵er requirement, but we have not been able to prove it. We still do

not understand the underlying causes of synchronization, or how to reduce it in drop-tail queues.

We believe our BBR result can be improved, and that BBR may allow a very small bu↵er. We have

focused on sizing the bu↵er for the worst-case behavior over a relatively long period of time, and it

may be possible to dynamically adjust the bu↵er size on a much shorter timescale.

More generally, though, we still have only a rudimentary understanding of bu↵er size, despite

its potentially big impact on application performance. Even if we know all the tra�c using a link,

we don’t know how to predict the best bu↵er size. We encourage further experimentation and

measurement with real applications.

Finally, we believe that future congestion control algorithms can significantly reduce bu↵er re-

quirements. With small modifications, existing algorithms can reduce bu↵er requirements, or in-

crease link utilization with small bu↵ers. If packet arrivals can be managed perfectly, bu↵ers can

be made smaller or even eliminated all together. We see no reason why a future congestion control

algorithm would need anything more than a very small bu↵er.
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4.11 Proof of Theorem 6

Proof. Fix some time t such that t1  t  t2. Let D be the set of flows decreasing their windows by

time t, let w = W (t1) and w
0 = W (t). After D has decreased their windows, the aggregate window

w
0 is

w
0 = w �

X

i2D

1

2
wi(t1) +

X

i2D̄

1.
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By a union bound,

w
0 � w � 1

2
|D|max

i2D
wi(t1) + n� |D|.

Let w⇤ = �BDP
n . By �-almost fairness, maxi2D wi(t1)  w

⇤. Substituting and simplifying we have,

w
0 � w + n� |D| (1 + w

⇤
/2) , (4.4)

Since wi(t) � 2, w⇤ � 2, and so 1 + w
⇤
/2  w

⇤
. Therefore,

w
0 � w + n� |D|w⇤

.

By the conditions of the theorem |D|  n2

�BDP +
p
n = n+

p
nw⇤

w⇤ . Substituting, we have

w
0 � w �

p
nw

⇤
.

Expanding the definition of w⇤, this becomes

w
0 � w ��

BDPp
n

.

By Assumption 4,

w
0
> BDP+B ��

BDPp
n

.

4.12 Proof of Theorem 9

The proof of a square root of n rule for BBR takes a slightly di↵erent path from the usual AIMD

proof. In particular, we don’t need to assume that the number of flows which see a loss is limited.

During the probe bandwidth phase, BBR picks a pacing rate of R and sends at pacing rates

{ 5
4R,

3
4R,R,R,R,R,R,R} for an RTT each. It begins this cycle at a random point (which is not

3
4R).

When BBR experiences a loss, it only decreases its rate if it is sending at a pacing rate of 5
4R [31,

Section 4.3.4]. In expectation, if flows were equally split between all the pacing rates, we would only

expect about n/8 flows to decrease their rates by 1/4. And even better, another n/8 flows would

increase their rates by 1/4 over the next RTT and the total change would be small.

Proof. In the worst case, all BBR flows see a loss at time t. Consider some flow i, and let Ri(t) be

the rate of flow i at time t, and Xi(t) = Ri(t) ·RTT�Ri(t1) ·RTT. Because of the random order
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of pacing rates, the Xi(t) are independent and identically distributed according to

Xi(t) =

8
>>><

>>>:

� 1
4Ri(t1) ·RTT with probability 1

8

+ 1
4Ri(t1) ·RTT with probability 1

8

0 with probability 6
8

Our goal will be to bound
Pn

i=1 Xi(t) and apply the usual argument with Lemma 3.

Note that EXi(t) = 0. Let ci = |Xi(t)� EXi(t)| = |Xi(t)| = Ri(t1) · RTT/4. By �-almost

fairness, ci is at most �BDP
4n . Applying Azuma-Hoe↵ding,

Pr

 
nX

i=1

Xi(t) < t

!
 exp

✓
� t

2

2
Pn

i=1 c
2
i

◆
,

 exp

✓
� t

22n

�2BDP2

◆
.

Fix some � > 0. If t =
�BDP

p
ln 1/�p

2n
, then

Pr

 
nX

i=1

Xi(t) < t

!
 �.

By definition of X(t), Wi(t) = BDP + B �X(t). We have just shown that with probability at

least 1� �, Wi(t) � BDP+B � t. Therefore by Lemma 3, if B > t then Q(t) > 0 with probability

at least 1� �.

4.13 Minimum number of flows which must decrease win-

dows

Many of our results have a condition on the number of flows which decrease their windows that

includes an expression like n2

�BDP . This is related to the number of flows which must decrease their

windows in order for W (t+ 1) to be lower than W (t).

To see this, let D(t) be the set of Reno flows which decrease their windows during RTT t. Then

the window in the next RTT is

W (t+ 1) = W (t)� 1

2

X

i2D(t)

wi(t) + n� |D(t)|.
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Let w� be the smallest window in D(t). By a union bound, we have

W (t+ 1)  W (t)� 1

2
|D(t)|w� + n� |D(t)|.

In order for W (t+ 1)  W (t), we need

|D(t)| � n

1 + w�/2
.

If we let w+ = �BDP
n , the condition we have on |D(t)| in the theorem statements is

|D(t)| � n

w+
.

There are two di↵erences between the two. Since we want a lower bound on W (t+ 1) to bound the

minimum bu↵er size, the condition has w
+ instead of w�. We also chose to use a slightly looser

bound of (1 + w
+
/2)  w

+ in (4.4) to simplify the required bu↵er size.

4.14 Proof of Lemma 10

The proof of Lemma 10 is a standard application of a Cherno↵ bound.

Proof. First, we calculate ED(t),

ED(t) = np  n
2

�BDP
(4.5)

Note that D(t)�ED(t) is the sum of independent random variables, and each term is at most 1 in

absolute value since

|Di(t)� EDi(t)|  max(1� p, p)  1.

Applying Azuma-Hoe↵ding, for " > 0 we have

P (D(t)� ED(t) > ")  exp

✓
� "

2

2n

◆
.

Plugging in (4.5) and " =
p
n, we have the desired result:

P
✓
D(t) >

n
2

BDP
+
p
n

◆
 exp

⇣
� n

2n

⌘
,

 exp(�1/2).

We could get a higher probability bound, for instance for any � > 0, by increasing the upper



CHAPTER 4. UPDATING THE THEORY OF BUFFER SIZING 85

bound on D(t) to n2

�BDP +
p
2n ln(1/�). This would change the assumption in Theorem 6, and one

could adapt the proof of Theorem 6 accordingly.



Chapter 5

Bu↵er sizing and Video QoE

Measurements at Netflix

5.1 Introduction

Internet routers have bu↵ers to avoid discarding packets during times of congestion. Despite decades

of work by researchers and in industry, we still have a poor understanding of the correct size for a

router bu↵er.

The networking community generally believes that a too-large router bu↵er will increase delay

and a too-small bu↵er will increase loss. However, it is not known if this trade-o↵ is fundamental

or simply an artifact of a particular congestion control algorithm. More practically, the broader

consequences of changing bu↵er size are also not well understood. There has been a long line of

work on how bu↵er sizing a↵ects network metrics [98, 185, 8, 20, 60, 171, 47, 69], but relatively little

work [87] examining the impact of bu↵er sizing on application performance.

In this work, we describe the results of a series of bu↵er sizing experiments we ran in collaboration

with Netflix, which begin to shed some light on this question. Netflix is one of the largest source of

internet tra�c in the world, and has a number of congested links in di↵erent locations. We tested

a variety of bu↵er sizes at some of these congested locations, and observed the e↵ects on TCP New

Reno and on the video quality of experience.

We find that properly sizing a bu↵er is both crucial for improving network and video quality

of experience, and also quite di�cult to do. Video quality of experience depends on a number

of factors including: the play delay—or time it takes to start the video, the visual quality of the

video streamed by the client, and the number of rebu↵ers—the times when video playback pauses

because a client has no video to stream. We have experimented with both too-small and too-large

bu↵ers, both of which can negatively impact video performance—a↵ecting play delay on the order

86
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Figure 5.1: An example site used for experiments. Tra�c from the ISP was randomly assigned
between the A and B stacks

of seconds, decreasing the visual quality of video streamed by 5-10%, and increasing the median rate

of rebu↵ers by 50%.

Our results also show that the question of sizing router bu↵ers is a↵ected by the internal workings

of the router. Prior work on bu↵er sizing assumes that the router is output queued; i.e. when a packet

arrives, it is immediately placed in a queue at the output port, and its departure time is una↵ected

by packets destined to di↵erent outputs. In our experiments, the routers used combined input

and output queueing (CIOQ), with large virtual output queues (VOQs) at the ingress, and a small

queue at each output. Arriving packets are initially placed in an ingress VOQ. An internal scheduling

algorithm transfers packets from the VOQs to the output queue, approximating the behavior of an

output queued switch.

While it is theoretically possible for a CIOQ switch to perfectly emulate an output queued

switch [40], in practice the emulation is imperfect, depending on the internal speedup and scheduling

algorithm. As we will see later, this imperfection complicates our results, and masks some of the

clarity we were seeking in our experiments. For example, we are unable to tell whether a bandwidth-

delay product is a good or bad size for a bu↵er, because we are unable to measure the rate at which

bu↵ers are served. We are able to make less specific conclusions, like on the general trend of whether

a larger or smaller bu↵er improves performance. We plan to address these concerns in future work.

To summarize, our main observations are:

1. For metrics related to TCP New Reno, the behavior matches intuition: packet loss increases

and RTT decreases as bu↵ers shrink.

2. Video performance has a sweet spot in terms of bu↵er size: bu↵ers can be both too small and
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too large, and in both cases increase the number of rebu↵ers and decrease the video quality.

3. The ability of the router to emulate perfect output queueing has implications on performance

and bu↵er size.

5.2 Related Work

Since at least 1990, the rule of thumb for sizing router bu↵ers has been that they need to be at least

as large as one bandwidth-delay product (BDP) [98, 185]. The justification for this rule of thumb

comes from the bu↵er size needed for a single TCP Reno flow to keep a bottleneck link fully utilized.

In 2004, Appenzeller et al. [8] argued that as the number of flows increases, the bottleneck

link can be kept fully utilized with a much smaller bu↵er. This is because the aggregate arrival

rate concentrates around its expectation. In this setting, they argue that a bu↵er of size BDP/
p
N

(where N is the number of TCP Reno flows sharing the bottleneck link) is su�cient to keep a link

fully utilized. Experiments by Level 3, Internet 2, and on the Stanford campus supported this result

[20].

Continuing this line of work, Enachescu et al. [60] showed that if arrivals are distributed accord-

ing to a Poisson process (either by assumption, multiplexing, or pacing), then the required bu↵er is

small—at most one hundred packets. To reduce the dependence on specific models of TCP, Stano-

jević et al. [171] propose an adaptive algorithm to shrink the bu↵er as long as the link utilization is

above a predetermined threshold.

After this line of work, one might think that bu↵ers should be reduced as far as possible. In our

experiments, we find cases where reducing the sizes of bu↵ers both helps and hurts. Furthermore,

we observe interesting QoE e↵ects well before a link becomes under-utilized—which this line of work

does not address.

Dhamdhere et al. argue the opposite in [47]. Among other results, they describe a model in

which packet loss is proportional to the number of flows using a bottleneck link, so the bu↵er must

grow proportionally to the number of flows in order to limit loss. We also observe similar behavior

for loss, which we describe in Section 5.4.1. However, more loss is not necessarily a bad thing, and

we report results from experiments in Section 5.4.2 where loss significantly increased but quality

generally improved.

In the early 2010s, Gettys et al. [69] revisited the question of bu↵er sizing, observing that the

oversized bu↵ers in cable modems cause massive delays and standing queues during congestion, often

referred to as bu↵erbloat. This observation led to, among other contributions, the development of

new AQM algorithms [137, 140] and new congestion control algorithms [33]. We observe similar

large delays and standing queues in internet routers in Section 5.4.1.

Hohlfeld et al. in [87] run a testbed study on the e↵ect of bu↵er sizing on the QoE of VOIP, RTP

video streaming, and web tra�c. Among other findings, they observe that bu↵er sizing can cause
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Experiment parameters Application e↵ects TCP e↵ects
Site A Size B Size Hr. Sess. w/ Rebu↵. Low Qual. Sec. Play Delay Min. RTT Retrans.

#1 50M 500M 46 +46.3% +5.7% -5.9% -10.9% +85.2%
#1 250M 500M 30 +5.5% -1.6% -3.6% +9.6% +17.1%
#1 750M 500M 13 +10.6% +7.2% +7.8% -19.2% -1.6%
#1 1G 500M 15 +4.9% +9.6% +9.5% -16.4% -10.4%
#2 5M 50M 14 +0.5% -2.1% -5.7% -13.5% +51.1%
#2 12M 50M 22 +33.9% -4.0% -6.0% -19.1% +68.7%
#2 25M 500M 90 -15.6% -5.3% -13.5% -34.8% +130.6%
#3 50M 500M 34 -22.1% -7.0% -14.8% -5.1% +134.8%

Table 5.1: Average percent change in application performance during congested hours. A positive
value corresponds to an increase in that metric for the canary. Lower values correspond to an
improvement in the metric for the “A Bu↵er” size. Statistically significant results (p=0.01) are
highlighted in gray. For more information, see Section 5.4
.

a significant change in QoS metrics (e.g. packet loss, RTT) which result in a much smaller change

in QoE metrics. We observe the same, in some cases doubling the rate of packet loss resulting in a

much smaller change in QoE metrics.

5.3 Experimental Methodology

In this section we describe the Netflix architecture, our experiment, and the metrics we use to

evaluate the results.

5.3.1 Netflix Open Connect Architecture

Netflix’s CDN is called Open Connect. It consists of many points of presence around the world, called

“sites”. Figure 5.1 shows an example site. For fault tolerance, sites are split into two “stacks.” Each

stack consists of a router, a set of catalog servers which store the entire Netflix catalog, and a set

of faster o✏oad servers which store a smaller set of the most popular videos, so named since they

“o✏oad” the popular videos from the catalog servers. The tra�c is video tra�c. It is primarily

long-lived TCP New Reno flows, though it also contains a non-negligible number of short-lived flows.

Please refer to [135] for more information.

5.3.2 Router Architecture

Our experiments were done using Combined Input-Output Queued (CIOQ) internet routers. These

routers employ a di↵erent bu↵er architecture than the output queued (or shared bu↵er) routers of

existing work. In an output queued router, all input ports place packets into the same bu↵er, and
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Figure 5.2: Diagram of router bu↵er architecture. Packets are queued in each VoQ upon arrival,
and are drained at a rate chosen by the egress scheduling algorithm.

this bu↵er is drained by the output port. In a CIOQ router, input ports place packets into di↵erent

Virtual Output Queues (VOQs), which are drained according to a scheduling algorithm.

The crucial di↵erence between these two models is the rate at which these bu↵ers are drained:

in existing work, bu↵ers are drained at a constant rate which corresponds to the port speed of the

output port. In our routers, the rate at which a VOQ is drained is chosen by an internal scheduling

algorithm, and can vary over time.

Figure 5.2 shows an example internal architecture of the routers used in our experiments. The

routers are divided into line cards. The bu↵ers for each line card are logically divided into VoQs.

Each output port has a few dedicated VoQs on each line card. Each input port is assigned to one of

these VoQs, and usually each VoQ has three or four associated servers.

When a packet arrives from a server, it is placed into the corresponding VoQ. The VoQ sends

packets to the egress port when allowed to by a scheduler. The egress port has a small 100KB bu↵er,

intended to briefly store packets before transmission and to aid with packet reconstruction.

The size of the VoQ is configurable, and we configure the router so that arriving packets are

dropped when the VoQ is full. When we set a bu↵er size in our experiments, for instance 500MB,

we are setting all VoQs to have a limit of 500MB.

We used the default scheduling algorithm for the router in our experiments, which is Deficit

Weighted Round Robin (DWRR), with weights proportional to the aggregate capacity of the input

ports. For instance in Figure 5.2, if all servers are connected with 100G links, VoQ 1 will have a

weight of 300 and VoQ 2 a weight of 200. We discuss the implications of this scheduling algorithm

in Section 5.5.

5.3.3 Our Experiment

We first identified a number of sites with persistent congestion to a peer during peak hours. In each

site, we ensured that the ISP’s tra�c was assigned to the two stacks independently and uniformly
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at random. We ran experiments with the same bu↵er sizes on both stacks, and observed minimal

di↵erences in the amount of tra�c and quality metrics. This gave us a controlled A/B test which

allowed us to measure the e↵ect of bu↵er sizing on quality metrics.

We configured the pair of stacks to use a variety of di↵erent bu↵er settings. This resulted in

setting the bu↵er size for each Virtual Output Queue (VoQ) in the router to the corresponding

setting. We will discuss more about the implications of this in Section 5.5.

We observed the di↵erence in performance on both application-level and TCP-level metrics. All

tra�c in our experiments used TCP New Reno.

5.3.4 Confounding issues

There are a few confounding issues which limit the generalizability of our results. The major one

is the Router’s VoQ architecture and scheduling algorithms. The scheduling algorithm means that

each queue is served at a variable rate. It is possible that this biases the e↵ect on metrics in one way

or another, for instance if an o✏oad VoQ is served at a low rate and a catalog queue is served at a

high rate, this could result in some tra�c experiencing worse congestion than it otherwise would.

Our experiment is not a perfect controlled trial. Netflix clients can switch between the di↵erent

stacks. If a video chunk fails to be downloaded from one stack, for example, the client might switch

to the other stack or another site entirely. This can also bias results. For instance, we could see an

increase in rebu↵ers because a certain bu↵er size caused worse QoE, or because the other bu↵er size

resulted in very bad QoE and the first stack became more heavily loaded.

5.3.5 Metric Definitions

A congested hour is an hour where the per-second link utilization, averaged over one hour, exceeds

98%. In our experiments, this is the point at which we begin to see an increase in RTT due to

congestion.1

A session refers to one TCP connection between a client and a Netflix server.

The minimum RTT for a session is the minimum time between when a packet is sent and its

acknowledgment arrives for all packets in a session. Note that it is the absolute minimum, not the

minimum of TCP’s smoothed RTT.

We measure loss via the percentage of retransmitted bytes, which is the fraction of all TCP bytes

sent during a time period which are retransmitted.

A rebu↵er is when video playback halts because data is not available to the client. We look at

the percentage of sessions with at least one rebu↵er.

1
The fact that we do not observe an a↵ect on RTT until exceeding 98% utilization is a bit surprising. Previous

work defines congestion with a much lower threshold, for instance [20], defines a congested hour as one which exceeds

75% link utilization.
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We measure video quality using VMAF [25], which models how people perceive the subjective

quality of video. The low quality seconds metric measures the time-weighted fraction of frames with

a VMAF below 80.

In a few cases, we’ve normalized sensitive metrics. This was done by dividing all metrics in a

graph by the largest value in that graph.

5.4 Experiment results

In this section, we discuss the results of our experiments, both on TCP-level metrics and on video

QoE metrics.

Table 5.1 summarizes the results of our experiments, and their e↵ect on video performance. In

each row, we report the average percent di↵erence in various performance metrics during congested

hours (where link utilization was at least 98%) between the tra�c to the A and B stacks. A negative

value corresponds to a lower number for the A Stack. For all presented metrics, lower is better. We

compute bootstrap confidence intervals [59] for p = 0.01, and highlight cells where the confidence

intervals does not include zero. As a sense of scale, all statistically significant results we observe are

quite large compared to other experiments at Netflix.

5.4.1 Impact on TCP New Reno

For TCP New Reno, our results match with intuition: as bu↵ers get smaller, we observe an increase

in packet loss and decrease in RTT.

Figure 5.3 shows an example impact of very large bu↵ers on RTT in Site #2. When bu↵ers get

very large, there are many negative e↵ects—we observe high RTTs and large variation in RTT. Our

preliminary results suggest this could be due to an increase in the percentage of sessions which are

receive-window and not congestion-window limited.

We observe that bu↵ers add a consistent delay to TCP flows. It is commonly assumed (e.g. [87])

that if a flow sends enough packets during congestion, eventually the flow will observe a RTT which

corresponds to the propagation delay through the network with no queueing. Our results show that

this is not the case. For instance, Figure 5.4 shows the minimum RTT distribution in Site #1, with

two moderately sized bu↵ers (50MB and 500MB). If this assumption were true, we would expect

the RTTs during the uncongested and congested hours to be similar, but they are not.

One surprising thing about Figures 5.3 and 5.4 is how much larger the RTT is for the 500MB

bu↵er in Site #2 than in Site #1. We will explain this in Section 5.5.

We observe that loss increases as the size of the bu↵er decreases, and as the number of flows

increases. Figure 5.5 shows that the percentage of retransmitted bytes for an hour increases as load

increases, and increases more quickly for smaller bu↵ers. Since hours with higher load tend to have

more flows, this aligns with the predictions of [47, 133, 144].
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Figure 5.3: Distribution of minimum observed RTT by a TCP session during a congested hour in
Site #2
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Figure 5.4: Distribution of minimum observed RTT by a TCP session during a congested hour in
Site #1

We found this behavior a bit surprising. One might hope that due to the large number of flows

at Netflix, the queue would approximately behave like an M/M/1 queue of size B. In particular,

loss probability would not strongly depend on B once B is more than a hundred or so packets. This

is not supported by our results, however.

5.4.2 Impact on Video

Bu↵er sizing has a big impact on video streaming quality. We generally find that there is a bu↵er

sizing sweet spot for video streaming, and that a bu↵er which is too small or too large can negatively

impact quality.

We consistently observe that reducing the size of a bu↵er reduces the video play delay.

Once the bu↵er size becomes too large (e.g. Site #2 and #3 with a 500MB bu↵er), we see an

increase in the number of rebu↵ers, increases in the amount of low quality video streamed, and an

increase in the time it takes to start a video.

If the bu↵er is too small (e.g. Site #1 , we see the opposite e↵ect: an increase in rebu↵ers,

increase in low quality video. The 50MB bu↵er for TCP New Reno in Site #1 is an example of a

too-small bu↵er.

We note that the increase in rebu↵ers we observe due to the smaller bu↵er is not solely due to

the increase in packet loss. While rebu↵ers are correlated with loss, Figure 5.6 shows that larger

bu↵ers tend to have a higher rate of rebu↵ers for similar loss rates. Furthermore, we see cases where
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Figure 5.5: Percentage of retransmitted bytes as a function of normalized load in Site #1. Each
point represents an hour. Retransmits tend to increase as load increases, and increase faster for
smaller bu↵ers.
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Figure 5.6: Rebu↵ers as a function of the percentage of retransmitted bytes. For hours with similar
percentages of retransmits, the smaller bu↵er router has lower rates of rebu↵ers.

a bu↵er size which causes an increase in retransmits can correspond with an increase in overall QoE,

for instance Site #2 with a 25MB bu↵er or Site #3 with a 50MB bu↵er.

5.5 Router architecture impacts choice of bu↵er size

In Section 5.3.2, we described the architecture of the router bu↵ers in our experiment. In this section,

we describe some of the e↵ects of this architecture in conjunction with the particular scheduling

algorithm we used.

Recall that the VOQ scheduler used a Deficit Weighted Round Robin (DWRR) policy. DWRR

associates a weight with each VOQ, and ensures that the departure rates of the VOQs are propor-

tional to their weights. However, if one or more VOQs have a lower arrival rate than their weighted

fair share, then that VOQ will be served at its arrival rate and the remaining bandwidth will be

allocated among the remaining VOQs. For instance, if the “Catalog VOQ” in Figure 5.2 has an

arrival rate lower than 33 Gbps, for instance 20 Gbps, then all 20 Gbps of its tra�c will be sent,

and the remaining 80 Gbps will be given to tra�c from the “O✏oad VOQ”. If this happens, the

“Catalog VOQ” will experience no queueing delay.

On its own, this is standard behavior for a VOQ-based system. However, in our setting, there

were a number of additional factors:

1. The VOQs were configured to be shared by many servers.
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2. The scheduling algorithm set the weight of each VOQ based on the total available capacity

plugged into the input ports for that VOQ. For instance, if three 100G servers were plugged

into a VOQ, that VOQ would essentially have a weight of three.

3. Due to the cabling, most VOQs consisted of entirely o✏oad servers or entirely catalog servers.

The combination of these factors caused lots of surprising behavior throughout our experiments.

Including:

Large queueing delay. Figures 5.4 and 5.3 both show the observed Minimum RTT distributions in

two di↵erent sites, during an experiment where one bu↵er was set to 500MB. Both are for congested

100G ports, so we expected to see an increase in Min. RTT of about 40ms. Instead, we observe

an 80ms increase in Figure 5.4 and a 100-300ms increase in Figure 5.3. This di↵erence is due to

the number of cores: Site #1 has two cores, and Site #2 eighteen, so the VOQ in Site #2 is being

served at a fraction of the rate of Site #1.

Unfairness between cores. Figure 5.7 shows the distribution of RTTs for seven of Site #2’s

VOQs during an uncongested and a congested hour. Despite having the same size and a similar

RTT distribution during the uncongested hour, the RTT distributions are very di↵erent during the

congested hour. This is because each VOQ is being served at a di↵erent rate by the scheduling

algorithm.

Uncongested tra�c during congestion. We expected that all tra�c sharing a congested port would

experience congestion. However, if some VOQ did not have enough tra�c to meet its weighted fair

share, it would experience no congestion. Figure 5.8 shows the RTT distribution for the hours

leading up to and after peak in Site #1, for tra�c using a congested port. Because the catalog

servers did not send their weighted fair share of tra�c, they experienced no congestion.

We have been working with our router vendor to ameliorate some of these issues, and we believe

that it will be possible to fix much of this behavior via a firmware upgrade. However it is not clear to

us what the right scheduling behavior is nor how to size bu↵ers given whatever scheduling behavior

we observe, and we leave this question for future work.

5.6 Conclusion

We find that TCP Reno generally behaves as expected when changing bu↵er sizes, with a smaller

bu↵er causing higher loss and lower delay.

The story for the best bu↵er size for video is much more complicated, but we find that improve-

ments in bu↵er size can dramatically improve video QoE.

We also find that considering application QoE is crucial when sizing router bu↵ers. Existing

bu↵er sizing work has generally focused on network-level metrics, for instance whether a link is

fully utilized [8, 20, 60, 171], loss, queueing delay [47]. In all our experiments there were interesting
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Figure 5.7: Distribution of the minimum RTTs observed by TCP flows sharing a router, one row
per VOQ. Each VOQ has the same size.
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Figure 5.8: Normalized distributions of the minimum RTT observed by TCP flows from one stack,
split by Catalog and O✏oad servers with one row per hour.

e↵ects on video QoE which went beyond whether the link was fully utilized, and whether loss or

delay increased.

An intuitive idea is that if a bu↵er never goes empty during periods of congestion, then it could

be shrunk to improve (or at least not degrade) application performance. Our results suggest that

this intuition is not true. In our experiments with smaller bu↵ers, we observe negative e↵ects on

applications (e.g. an increase in rebu↵ers) while still seeing an elevated distribution of minimum

RTTs.

We plan on continuing this line of work. We are exploring ways of understanding and ex-

perimenting with bu↵er sizing in the presence of the VoQ scheduling algorithms, getting a better

understanding of the mechanisms by which bu↵er sizing a↵ects video QoE, and understanding how

di↵erent congestion control algorithms a↵ect bu↵er sizing.



Chapter 6

Conclusion

6.1 Dissertation summary

Most internet tra�c today is video, characterized by an on-o↵, bursty tra�c pattern: alternating

between periods of sending data and periods of silence every few seconds. This on-o↵ behavior

happens whenever throughput exceeds the video’s bitrate. Modern congestion control algorithms

try to maximize throughput, making video tra�c more bursty as home network speeds increase

[167, 43] and video bitrates decrease [108].

Chapter 2 shows how smoothing video tra�c can improve performance for neighboring applica-

tions sharing the same network. By picking throughput based on video needs (instead of maximizing

throughput), we can avoid congestion completely. This reduces packet loss and queueing delay, and

gives neighbors more instantaneous throughput. Remarkably, video QoE does not su↵er—in fact it

slightly improves. Video services are also incentivized to smooth their tra�c: because large scale

streaming services compete with themselves in many networks across the internet, being friendlier

to their neighbors means improving performance for themselves.

Chapter 3 shows the di�culties in experimenting with new algorithms like Sammy that a↵ect

internet congestion at scale. The networking research community typically evaluates these algorithms

with A/B tests, but I show that this can lead to biased results and even switch the direction of

improvement—an algorithm that appears worse in an A/B test might actually improve performance

when deployed, and vice versa. In an experiment at scale in a congested network, I show that while

bitrate capping reduces congestion, it appears to increase congestion in an A/B test. Chapter 3 also

suggests ways for researchers to deal with this bias, including alternate experiment designs.

Finally, in Chapter 4 I revisit the long-standing problem of sizing bu↵ers in routers. Prior work

suggested that bu↵ers can be reduced by a factor of square root of the number of flows n using the

network, o↵ering dramatic bu↵er reductions in networks carrying many flows. However, the result

required TCP Reno, did not make clear how to determine n, or what happens when windows are not
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independent. Our results clarify that n is the number of flows that reduce their window size in the

same RTT, removes the need for independence, and holds for a broader class of congestion control

algorithms. Our results explore what happens when bu↵ers are sized too small for full link utilization

and make it easier to run bu↵er sizing experiments, which should give much more confidence that

the results apply broadly. In Chapter 5 I looked at how sizing bu↵ers a↵ect production video tra�c,

and found that video QoE is impacted well before link utilization is.

6.2 Reflections on congestion control

My thesis approaches congestion from the application perspective, investigating how modifying

video tra�c can reduce congestion on the internet. My primary approach to this was smoothing

video tra�c with Sammy, which dramatically reduces congestion both in a lab setting, and in

experiments run at scale at Netflix (reducing RTTs by 20% and retransmits by 50%). I also explored

a complimentary approach in Chapter 3: capping video bitrates. In our stack-based experiment,

capping bitrates reduced RTTs by 25%, play delays by 10%, and increased throughput by 10%.

These two approaches e↵ectively reduce congestion, but they are very di↵erent from the way

networking research approaches congestion control today. While working on this research, I had a

number of conversations in which people very reasonably argued that smoothing video tra�c and

capping bitrates were not congestion control algorithms at all. In light of this, in this section I discuss

how we approach congestion control today and argue that we should reconsider our approach.

Today, the problem of congestion control is widely considered to be a problem of allocating

resources at the transport layer [141, 192]. There’s a resource (the link capacity), and it needs to

be allocated among all the congestion control algorithms using it. The problem is to maximize

throughput and ensure that the link is fully utilized, while ensuring that the allocation does not

cause congestion (i.e. exceed the capacity of the link) and that the allocation is fair (i.e. equal, or

optimizing some utility function).

This goal of sending as fast as possible is at the core of almost all congestion control research.

In Jacobson’s original paper on congestion control [97], he justifies sending faster when there is no

congestion with the following example:

You could have been sharing the path with someone else and converged to a window that

gives you each half the available bandwidth. If she shuts down, 50% of the bandwidth

will be wasted unless your window size is increased.

In the first papers on network utility maximization [110], which have formed the theoretical basis

for recent congestion control algorithms [51, 11, 134, 131], the assumption is that utility functions

are strictly concave and increasing. That is, that higher throughput gives strictly higher utility. In

bu↵er sizing work, the goal is to reduce the size of the router bu↵er as much as possible without

reducing link utilization [8, 98, 163]. Maximizing throughput is so core to the way we think about
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congestion control today, that it’s rarely questioned. Here’s the way a recent book [141, Ch. 3.2.1]

describes the goal of congestion control:

A good starting point for evaluating the e↵ectiveness of a congestion-control mechanism

is to consider the two principal metrics of networking: throughput and delay. Clearly,

we want as much throughput and as little delay as possible.

Because congestion control algorithms aim to maximize throughput, the congestion control problem

is thought of as a zero-sum game. If one algorithm increases its throughput while sharing a network

with another algorithm, that other algorithm gets less throughput. We think of this as “unfair”

[17, 2, 191, 28, 118, 13, 158, 94, 51, 189, 30, 93, 105, 182, 183, 101] and talk about the harm

to the algorithm which gets lower throughput [189]. One of the major challenges in designing new

congestion control algorithms is remaining fair to current algorithms, while simultaneously improving

throughput and reducing congestion in networks where current algorithms do not perform well. It’s

common for papers to come out shortly after a new algorithm is proposed, showing that the new

algorithm is unfair to a particular existing algorithm in a particular network (e.g. [105, 183, 85]).

At their core, these challenges come from way that congestion control algorithms are designed to

maximize the throughput of individual flows.

Taking a step back, this is a strange way of thinking about internet tra�c. The internet exists

because people want to do things online. We even have good statistics about what people want to

do: in 2022, 75% of internet tra�c was video streaming, 6% was marketplaces and gaming, 5% was

social networking, 5% was web browsing, and so on [152]. Users of the internet do not care about

allocating network resources, they care about doing things like watching videos, playing games, or

talking to their friends.

In light of this, this thesis approaches congestion control from the perspective of video tra�c (by

far the largest application today). There has been extensive research into what it means for video

tra�c to perform well: namely, that QoE is high. Because of this we can focus on maximizing QoE

and avoid more typical goals of congestion control. Most notably, the goal of this work has been to

minimize throughput without reducing QoE, which is the opposite direction of the goal of typical

congestion control research. Because of this, we are able to step outside of the zero-sum game and

focus on improving performance for neighbors. For example, the results of the lab experiments in

Section 2.6 are by definition not zero-sum: Sammy decreases its throughput, maintains video QoE,

and improves performance for neighboring applications.

The results of this new approach are promising. When video tra�c is sending data, we reduce

its throughput by more than 60%, reduce retransmits by more than 50%, and reduce round-trip

times by more than 20%. We do this while improving performance for neighbors, in the lab improv-

ing throughput for TCP, reducing delay for UDP, reducing flow completion time for HTTP, and

improving the play delay of video tra�c.
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6.3 Future directions

This thesis outlines a new approach to controlling congestion on the internet, and in doing so it

opens up a number of new research directions.

6.3.1 Congestion control for video tra�c

This thesis focuses on reducing congestion when network capacity is significantly higher than the

maximum bitrate of the video—the most common case on the internet today. To do so, we have

relied on existing congestion control algorithms, limited via application-informed pacing. But there

are important networks where capacity is lower than maximum bitrates, such as in mobile networks

and in parts of the world with worse connectivity, and we could go further and reduce congestion in

these networks. Approaching congestion control with the goals of video tra�c in mind gives us an

opportunity to revisit congestion control for video tra�c from the ground up.

I am imagining here a new algorithm for video tra�c that is responsible for the tasks of exist-

ing ABR and existing congestion control algorithms. Such an algorithm would choose both video

bitrates and when to send each individual packet. This algorithm could incorporate recent ideas

from congestion control for video, including smoothing video tra�c, VMAF-based fairness [134], and

scavenger algorithms [131]. These recent congestion control algorithms rely on assumptions about

the behavior of ABR algorithms (e.g. by assuming some utility function is provided that matches

ABR behavior), and ABR algorithms in turn rely on assumptions about congestion control algo-

rithms and the throughput they produce (e.g. assuming that past throughput is predictive of future

requests). A jointly designed algorithm could avoid some of these assumptions, and potentially

improve performance.

One particularly intriguing idea is to move congestion control into the application layer, and

make the ABR algorithm responsible for congestion control. The ABR algorithm could request a

particular sending rate for each HTTP request it issues, and the server would just send at that rate.

This would make it easy to develop new congestion control algorithms (even in third-party CDNs,

where a video provider currently cannot develop new algorithms). It would also allow the ABR

algorithm to use additional information to choose throughputs, including bu↵er levels, historical

throughput, video quality (and VMAF), player state, and the many other things ABR algorithms

consider.

A glaring challenge is how to deal with congestion that starts during the middle of a chunk

download. There are a number of possible options here:

1. The ABR algorithm could completely ignore the issue and make another decision whenever

it issues the next HTTP request. This seems like it would not perform particularly well, but

it would be interesting to measure the benefit of sub-chunk congestion control to video tra�c

and neighboring tra�c.
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2. The ABR algorithm could cancel partially completed requests after some timeout has elapsed,

and issue new requests for the remaining bytes with a new sending rate. This could reduce

the duration of congestion.

3. The ABR algorithm could choose how the transport layer responds to congestion. Perhaps

by picking a rule that the transport layer uses to adjust the sending rate on each packet, or

perhaps by picking a rule that detects congestion and have the transport layer cancel requests

whenever the rule detects congestion.

4. We could reduce the size of HTTP requests (perhaps down to the level of just a few packets),

so any sudden increase in congestion would be immaterial.

The other extreme would be to move ABR algorithms into the transport layer. This is somewhat

common in real-time video tra�c, for instance Salsify [67] uses packet trains to estimate throughput

and adapts bitrates on a packet by packet level. This would be most useful if the ABR algorithm

running at the transport layer could somehow change bitrates on a packet-by-packet basis. Current,

widely-used video encoding technologies would not allow for this, but perhaps something like Scalable

Video Coding [159] or some future encoding technologies would allow switching bitrates on packet

boundaries, perhaps by decoding a lower bitrate frame from a subset of packets of a higher bitrate.

It would take some thought to deploy such a scheme in today’s large-scale video streaming systems,

where clients run ABR algorithms and the transport layer is under the control of a third-party CDN.

Even short of redoing congestion control, continuing to look at how ABR algorithms can inform

existing congestion control algorithms is a promising angle for future research. One particularly

promising place to start is, naturally, the start of a TCP connection. Today, TCP connections start

with an initial window size that is set globally [53, 150], and then proceed to run slow start and

double the window until loss occurs [24]. This seems a bit ine�cient for video, where requests are

for a particular bitrate and ABR algorithms use historical throughput measurements to estimate

initial throughput. An alternative could be to have ABR algorithms choose an initial throughput

for each request, and have congestion control adapt as the request continues.

6.3.2 Smoothing out video tra�c at other time scales

In this thesis we have focused on congestion at two di↵erent levels: congestion at the level of a single

video session (in the case of Sammy), and congestion at the level of a network (in the case of bitrate

capping). Future work could consider other algorithms to smooth out congestion at the network

level. At scale, internet tra�c has a diurnal pattern [178]: it is highest during peak hours (6-12pm

local time), and is significantly lower o↵-peak. To get a sense of the di↵erence, consider the daily

tra�c for a large Central European ISP shown in Figure 2a of [27]—the four least-loaded hours have

less than 20% the tra�c of the peak hour.
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Smoothing this tra�c out by moving tra�c from peak to o↵-peak hours would benefit network

operators in two dfi↵erent ways:

1. ISP networks are provisioned for peak tra�c loads, and so if congestion occurs in ISP networks,

it tends to be during peak hours. By reducing tra�c volume during peak hours, we could reduce

congestion.

2. Network bandwidth is billed based on peak hours. The standard way of billing networks is

burstable billing [49], where a month is divided up into five minute buckets and sorted from

most to least bytes transferred over these five minutes. The operator is billed for the number

of bytes transferred in some percentile bucket, usually the 95th or 90th. By reducing tra�c

volume during peak hours, we could reduce cost.

But how could we move tra�c from peak to o↵-peak hours? Imagine if video clients had a much

larger bu↵er (large enough to store a couple of videos), and a video service provider could do a

reasonably good job at predicting what videos a client might watch during peak hours. Video

clients could download the predicted videos o↵ peak. If the predicted videos were played during

peak hours, the videos would not need to be downloaded and load would be lower. The benefits of

this approach depend on how accurately providers could predict which videos would be watched at

peak, and the ratio of peak to o↵-peak tra�c in a particular network. Typically operators add new

capacity to networks fast enough so that the load that creates congestion is only slightly higher than

the capacity of the network. Even a slight decrease in load can significantly reduce congestion. A

detailed exploration of this idea is left for future work.

6.3.3 Application-based congestion control for non-video applications

This thesis has focused on smoothing out video tra�c, but there are many other applications that

use the internet. One could take a similar approach to congestion control for major non-video uses

of the internet (e.g. web browsing, gaming, software updates, etc. . . ). The layering architecture

of the internet encourages these other applications to use a similar strategy of allowing congestion

control algorithms to select the maximum throughput without application input. We view Sammy

as a starting point for using application-level logic to smooth out internet tra�c: by using details

about the behavior of other applications, we may be able to make other types of internet tra�c into

friendlier neighbors as well.

As an example, imagine a software update that downloads sometime in the middle of the night,

while the user is asleep. If there’s an eight hour period when the user is asleep, there’s no need to

try to download the update as quickly as possible.

As another example, imagine a browser loading a webpage. The browser downloads the HTML

of the webpage, parses the HTML, and then issues a series of follow-up HTTP requests to download

images, scripts, stylesheets, and so on. The follow-on content is then parsed and executed, which can
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result in even more requests, creating a “waterfall” of requests. Given a waterfall and information

about when its various elements were shown to a user, one could compute the minimum throughput

for each HTTP request that would result in the same user-observed latency. If we were to pace each

request at this throughput, we could potentially smooth out the web page tra�c without impacting

latency. The challenge of designing an algorithm to do this online is left as future work.

6.3.4 Experiments with smoothing video tra�c at scale

Throughout this thesis, I have relied on lab experiments and formal reasoning to argue that smooth

video tra�c improves performance for neighbors. The question of how smoothing video tra�c

impacts neighboring tra�c at scale is still intriguingly open. Using our work in Chapter 3, one could

collaborate with other internet services to measure the impact of Sammy (and other algorithms) that

impact congestion. For instance, if Netflix ran a switchback experiment with Sammy, they could

call up various other large internet services or look at publicly available measurements, and compare

the days when Sammy was run to the days when Sammy was not. This would give estimates of the

impact of Sammy on its neighbors.

6.3.5 Bu↵er sizing for video tra�c

This thesis discussed the impact of sizing router bu↵ers on congestion control algorithms, but the

impact of sizing router bu↵ers on video QoE is an almost wide open research area. Existing work

on bu↵er sizing, Chapter 4 included, focuses on sizing bu↵ers to ensure that congestion control

algorithms fully utilize the link. Chapter 4 goes slightly further in ensuring that link utilization is

at least some percentage. But when smoothing video tra�c, our goal is to make link utilization

as low as possible. Chapter 5 presents some preliminary experiments, but there is no theoretical

understanding on how small router bu↵ers can be without reducing video QoE.

There may be some surprising results here—let’s briefly consider the problem of bu↵er sizing for

a single Sammy session. After playback starts, Sammy paces packets around 3x the maximum video

bitrate. If this rate is lower than the capacity of the network, no bu↵er is required for good QoE.

The packet-by-packet arrival rate is lower than the link capacity, and so no queues will build up. A

complete understanding of the bu↵er size required for Sammy (including the initial phase and with

multiple sessions) is still an open question.

6.4 Concluding remarks

This thesis suggests an alternate approach to reducing congestion on the internet, and is just the

beginning of an area of research around application-based congestion control, and ways of reducing

congestion at scale. As a community, we have an opportunity to further smooth internet tra�c,
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video tra�c and beyond. After all, a smoother internet benefits everyone.
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[150] Jan Rüth, Christian Bormann, and Oliver Hohlfeld. Large-scale scanning of TCP’s initial

window. In Proceedings of the 2017 Internet Measurement Conference on - IMC ’17, pages

304–310, London, United Kingdom, 2017. ACM Press.

[151] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli,

and Amin Vahdat. Carousel: Scalable Tra�c Shaping at End Hosts. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, pages 404–417, Los

Angeles CA USA, August 2017. ACM.

[152] Sandvine. Sandivne Global Internet Phenomena Report 2023. Technical report, Sandvine,

January 2023.



BIBLIOGRAPHY 118

[153] Yusuf Sani, Andreas Mauthe, and Christopher Edwards. Adaptive Bitrate Selection: A Survey.

IEEE Communications Surveys & Tutorials, 19(4):2985–3014, 2017.

[154] Kozo Satoda, Hiroshi Yoshida, Hironori Ito, and Kazunori Ozawa. Adaptive video pacing

method based on the prediction of stochastic TCP throughput. In 2012 IEEE Global Com-

munications Conference (GLOBECOM), pages 1944–1950, December 2012.

[155] Martin Saveski, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan, Souvik Ghosh,

Ya Xu, and Edoardo M. Airoldi. Detecting Network E↵ects: Randomizing Over Random-

ized Experiments. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 1027–1035, Halifax NS Canada, August 2017.

ACM.

[156] Robert Sayre. Change max-persistent-connections-per-server to 6., March 2008.

[157] Nate Schloss and Ben Maurer. This browser tweak saved 60% of requests to Facebook, January

2017.

[158] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien Geyer, and

Georg Carle. Towards a Deeper Understanding of TCP BBR Congestion Control. In 2018 IFIP

Networking Conference (IFIP Networking) and Workshops, pages 1–9, Zurich, Switzerland,

May 2018. IEEE.

[159] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the Scalable Video Coding

Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems for Video

Technology, 17(9):1103–1120, September 2007.

[160] Je↵ Semke, Jamshid Mahdavi, and Matt Mathis. The Rate-Halving Algorithm for TCP Con-

gestion Control.

[161] Anant Shah. BBR evaluation at a large CDN, November 2019.

[162] Steve Souders. Roundup on Parallel Connections, March 2008.

[163] Bruce Spang. Brucespang/tcp probe, May 2020.

[164] Bruce Spang, Veronica Hannan, Shravya Kunamalla, Te-Yuan Huang, Nick McKeown, and

Ramesh Johari. Unbiased experiments in congested networks. In Proceedings of the 21st ACM

Internet Measurement Conference, IMC ’21, pages 80–95, New York, NY, USA, November

2021. Association for Computing Machinery.

[165] Bruce Spang and Nick McKeown. On estimating the number of flows. In BS ’19: 2019

Workshop on Bu↵er Sizing, page 4, December 2019.



BIBLIOGRAPHY 119

[166] Bruce Spang, BradyWalsh, Te-Yuan Huang, Tom Rusnock, Joe Lawrence, and Nick McKeown.

Bu↵er sizing and Video QoE Measurements at Netflix. In Proceedings of the 2019 Workshop

on Bu↵er Sizing, Palo Alto CA USA, December 2019. ACM.

[167] Speedtest. Internet Speed around the world, February 2023.

[168] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. From Theory to Practice: Improv-

ing Bitrate Adaptation in the DASH Reference Player. ACM Transactions on Multimedia

Computing, Communications, and Applications, 15(2s):1–29, April 2019.

[169] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. BOLA: Near-Optimal Bitrate

Adaptation for Online Videos. IEEE/ACM Transactions on Networking, 28(4):1698–1711,

August 2020.

[170] Jerzy Splawa-Neyman, Dorota M Dabrowska, and TP Speed. On the application of probability

theory to agricultural experiments. Essay on principles. Section 9. Statistical Science, pages

465–472, 1990.

[171] Rade Stanojevic, Robert N. Shorten, and Christopher M. Kellett. Adaptive Tuning of Drop-

Tail Bu↵ers for Reducing Queueing Delays. ACM SIGCOMM Computer Communication

Review, 37(1), January 2007.

[172] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao Liu, and

Bruno Sinopoli. CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven

Throughput Prediction. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 272–

285, Florianopolis Brazil, August 2016. ACM.

[173] Srikanth Sundaresan, Mark Allman, Amogh Dhamdhere, and kc cla↵y. TCP congestion sig-

natures. In Proceedings of the 2017 Internet Measurement Conference, pages 64–77, London

United Kingdom, November 2017. ACM.

[174] Mohit P. Tahiliani, Vishal Misra, and K. K. Ramakrishnan. A Principled Look at the Utility

of Feedback in Congestion Control. In Proceedings of the 2019 Workshop on Bu↵er Sizing,

pages 1–5, Palo Alto CA USA, December 2019. ACM.
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