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Group Testing




Don’t need individual tests

:
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/ Sick :(

We know this person is sick



Need to carefully design tests

>
Sick :( Ok

We can’t distinguish these two



Need to carefully design tests

>
Sick :( Ok

We can’t distinguish these two



Group Testing Problem

We have m items, at most d of which are defective.

Definition: A test returns whether a subset of items
iIncludes any defectives or not.

Problem: Construct a set of tests which can identify any
set of at most d defective items.



Some Kknowhn results

Include each person in a test

with probability 1/(d+1)

O(d? log m) easy construction

((d? logg m) lower bound [Dyachkov-Rykov 82]

Random is pretty close to optimal

check citation style
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A nhetwork



A network, failing

NN
0’4‘




Finding failures

T\
4 0'4‘




Finding failures

VAN NS4
A 0'4‘




Graph-constrained Problem

We have a graph G=(V.E) with n nodes and m edges, at
most d edges are defective.

Definition: A graph-constrained test returns whether
any edges in a connected subset of edges are defective
or not.

Problem: Construct a set of graph-constrained tests
which can identify any set of at most d defective edges.



Our informal result

“You can do this nearly-optimally for lots of graphs
(more than previously known)”



This seems surprising

For some graphs, these constraints matter a lot

Theorem [Harvey et al 2007]: For the cycle graph on n
nodes, at least n/2 tests required

Proof: Each neighboring pair of edges must be
separated by some test. Each test is a path and can only
separate two pairs. There are about n pairs.

\ /




Harvey et al 2007

Most general result: for any graph with more than d
edge-disjoint spanning trees, can use O(d3log m) tests
to identify at most d defective edges.




Harvey et al 2007

Most general result: for any graph with more than d
edge-disjoint spanning trees, can use O(d3log m) tests
to identify at most d defective edges.




Cheraghchi et al 2010

e Current state of the art
e Fach test is a random walk on the graph

e For certain graphs, can do it in O(T2d?2 log m) tests!

D-regular graphs, D = 6d log? n



Cheraghchi et al 2010

Good parts Limitations

e Optimal for a complete graph! e Degree requirement of log n means
It can’t deal with constant-degree

e Good expanders are nearly optimal: expanders

off by O(log?2 m)
e Barbell feels like 1t should work but

doesn’t:

n/z .—. n/z



Summary

Problem: group testing, each test is connected subgraph
Lower bound: (0(d?2 logqg m)

Gaps:

e Constant mixing time: none

e Expanders: O(logZ2 m)

e Barbell: O(m)
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Informal result

If & graph sufficiently well-enough connected, we can
find any set of d defective edges using O(d? log m) tests

\

Same as unconstrained group testing




(B,00)-expanders

All sets S of size at most Pn have a boundary of at least
x|S| edges

S

S| < Bn

; : V\S

“‘“\ :'

at least o|S|
edges



Examples of (B,00)-expanders

Graph
Edge expander
Complete

Barbell

at least «|S|
edges



Main Theorem

Let G = (V,.E), V] =n, |E| = m be a (B,x)-expander, and
d > O where

x> d/2+ O).
Then there exists a set of O(B-'d2 log m) tests that

iIdentify any set of at most d defective edges.



Special Cases

At most d < do

Graph Source Number of Tests .
fallures

[CKMS10] O(d2log m) do = Q(m)
Complete
Our work O(d2log m) do = Q(m)
............................. WO o don m o = D)
[CKMSI10] O(d2log3m) do = Q(D/log2m)
Our work O(d2log m) do = Q(D)
Erdés—Rényi Graph [CKMSI10] O(d2logZm) do = Q(D/log2m)
Our work O(d2log m) do = Q(D)
............................. - Scdtton m o
SEIelslll|  [CKMSIO] O(m) do=m

Our work O(d2log m) do = Q(m)



Algorithm

For 1...T:

¢ |Include each edge with probability
o ~1/d

e Use connected components larger
than Bn
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Proof outline

e Recall from earlier, if we just pick edges with
orobability ~1/d, we win if the resulting graph is
connected.

o |f K~ dlogn, just pick each edge with probability ~1/d,
the resulting graph is connected by [Karger 94]

e \We show most of the graph is connected when we
pick each edge with probability ~1/d



Gilant components

Model: Fix a graph, keep each edge independently with
probability p.

Lots of previous work shows large connected components
ex/st above some value of p:

1 +¢€

e [Erd0s-Renyi 59] P =

1 +¢€

n

e Expanders p= -

We show something stronger:

e for each edge, the probability the edge is picked and
included in a giant component is at least pg/8




Open problems

e Result for an arbitrary graph (start with a hypercube)

e Find a deterministic algorithm



Thank you!



Technical Result

Let G=(V,E) be a (B,a)-expander, O < p <1, G(p) be the
subgraph of G constructed by including each edge
iIndependently with probability p, and C(u,v) be the
connected component of G(p) including edge (u,v).

1 +¢
If p2> :
o

then for all (u,v) € E

P(|C(u,v)| > pn) > €/2



