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Group Testing
The setting is World War II…
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Group Testing Problem
We have m items, at most d of which are defective. 

Definition: A test returns whether a subset of items 
includes any defectives or not. 

Problem: Construct a set of tests which can identify any 
set of at most d defective items. 



Some known results
O(d2 log m) easy construction 

Ω(d2 logd m) lower bound [Dyachkov-Rykov 82]

Include each person in a test 
with probability 1/(d+1)

Random is pretty close to optimal

check citation style
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A network



A network, failing
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Graph-constrained Problem

We have a graph G=(V,E) with n nodes and m edges, at 
most d edges are defective. 

Definition: A graph-constrained test returns whether 
any edges in a connected subset of edges are defective 
or not. 

Problem: Construct a set of graph-constrained tests 
which can identify any set of at most d defective edges. 



Our informal result
“You can do this nearly-optimally for lots of graphs       
(more than previously known)”



This seems surprising
For some graphs, these constraints matter a lot 

Theorem [Harvey et al 2007]: For the cycle graph on n 
nodes, at least n/2 tests required 

Proof: Each neighboring pair of edges must be 
separated by some test. Each test is a path and can only 
separate two pairs. There are about n pairs.



Harvey et al 2007
Most general result: for any graph with more than d 
edge-disjoint spanning trees, can use O(d3 log m) tests 
to identify at most d defective edges.

X
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Cheraghchi et al 2010
• Current state of the art 

• Each test is a random walk on the graph 

• For certain graphs, can do it in O(τ2d2 log m) tests! 

D-regular graphs, D ≥ 6d log2 n



Cheraghchi et al 2010
Good parts 

• Optimal for a complete graph! 

• Good expanders are nearly optimal: 
off by O(log2 m) 

Limitations 

• Degree requirement of log n means 
it can’t deal with constant-degree 
expanders 

• Barbell feels like it should work but 
doesn’t:

n/2 n/2



Summary
Problem: group testing, each test is connected subgraph 

Lower bound: Ω(d2 logd m) 

Gaps: 

• Constant mixing time: none 

• Expanders: O(log2 m) 

• Barbell: O(m) 



3. Unconstraining
2. graph-constrained
1. group testing



Informal result
If a graph sufficiently well-enough connected, we can 
find any set of d defective edges using O(d2 log m) tests

Same as unconstrained group testing



(β,α)-expanders
All sets S of size at most βn have a boundary of at least 
α|S| edges

S 
|S| ≤ βn

V \ S

at least α|S| 
edges



Examples of (β,α)-expanders

Graph β α

Edge expander 1/2 α

Complete 1/2 n/2

Barbell 1/4 n/4

S 
|S| ≤ βn

V \ S

at least α|S| 
edges



Main Theorem
Let G = (V,E), |V| = n, |E| = m be a (β,α)-expander, and 

d ≥ 0 where 

      α ≥ d/2 + O(1). 

Then there exists a set of O(β-1d2 log m) tests that 

identify any set of at most d defective edges.



Special Cases
Graph Source Number of Tests At most d ≤ d0 

failures

Complete
[CKMS10] O(d2log m) d0 = Ω(m)

Our work O(d2log m) d0 = Ω(m)

D-regular expander

[HPW+07] O(d3log m) d0 = Ω(D)

[CKMS10] O(d2log3m) d0 = Ω(D/log2m)

Our work O(d2log m) d0 = Ω(D)

Erdös-Rényi Graph 
G(n,D/n)

[CKMS10] O(d2log3m) d0 = Ω(D/log2m)

Our work O(d2log m) d0 = Ω(D)

Barbells
[HPW+07] O(d3log m) d0 = 1

[CKMS10] O(m) d0 = m

Our work O(d2log m) d0 = Ω(m)



Algorithm
For 1…T: 

• Include each edge with probability 
p ~ 1/d 

• Use connected components larger 
than βn
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Proof outline
• Recall from earlier, if we just pick edges with 

probability ~1/d, we win if the resulting graph is 
connected. 

• If K ~ d log n, just pick each edge with probability ~1/d, 
the resulting graph is connected by [Karger 94] 

• We show most of the graph is connected when we 
pick each edge with probability ~1/d



Giant components
Model: Fix a graph, keep each edge independently with 
probability p. 

Lots of previous work shows large connected components 
exist above some value of p: 

• [Erdös-Rènyi 59] 

• Expanders 

We show something stronger: 

• For each edge, the probability the edge is picked and 
included in a giant component is at least pε/8
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Open problems
• Result for an arbitrary graph (start with a hypercube) 

• Find a deterministic algorithm



Thank you!



Technical Result
Let G=(V,E) be a (β,α)-expander, 0 < p < 1, G(p) be the 
subgraph of G constructed by including each edge 
independently with probability p, and C(u,v) be the 
connected component of G(p) including edge (u,v). 

If 

then for all 

p ≥
1 + ϵ

α
,

(u, v) ∈ E

ℙ( |C(u, v) | ≥ βn) ≥ ϵ/2


