Unconstraining graph-constrained group testing

Bruce Spang*, Mary Wootters September 20, 2019

Unconstraining graph-constrained group testing

Group Testing The setting is World War II...

Sick :(

Group Testing

Sick :(

Don't need individual tests

Need to carefully design tests

We can't distinguish these two

Ok

Need to carefully design tests

We can't distinguish these two

Ok

Group Testing Problem

We have m items, at most d of which are defective.

Definition: A test returns whether a subset of items includes any defectives or not.

Problem: Construct a set of tests which can identify any set of at most d defective items.

Some known results

 $\Omega(d^2 \log_d m)$ lower bound [Dyachkov-Rykov 82]

Random is pretty close to optimal

Include each person in a test with probability 1/(d+1)

check citation style

3. Unconstraining2. graph-constrained1. group testing

A network

A network, failing

Finding failures

Finding failures

Graph-constrained Problem

We have a graph G=(V,E) with n nodes and m edges, at most d edges are defective.

Definition: A graph-constrained test returns whether any edges in a connected subset of edges are defective or not.

Problem: Construct a set of graph-constrained tests which can identify any set of at most d defective edges.

Our informal result

"You can do this nearly-optimally for lots of graphs (more than previously known)"

This seems surprising

For some graphs, these constraints matter a lot

Theorem [Harvey et al 2007]: For the cycle graph on *n* nodes, at least n/2 tests required

Proof: Each neighboring pair of edges must be separated by some test. Each test is a path and can only separate two pairs. There are about n pairs.

Harvey et al 2007

Most general result: for any graph with more than d edge-disjoint spanning trees, can use O(d³ log m) tests to identify at most d defective edges.

Harvey et al 2007

Most general result: for any graph with more than d edge-disjoint spanning trees, can use O(d³ log m) tests to identify at most d defective edges.

Cheraghchi et al 2010

- Current state of the art
- Each test is a random walk on the graph
- For certain graphs, can do it in $O(\tau^2 d^2 \log m)$ tests!

D-regular graphs, $D \ge 6d \log^2 n$

Cheraghchi et al 2010

Good parts

- Optimal for a complete graph!
- Good expanders are nearly optimal: off by O(log² m)

Limitations

- Degree requirement of log n means it can't deal with constant-degree expanders
- Barbell feels like it should work but doesn't:

Summary

Problem: group testing, each test is connected subgraph

Lower bound: $\Omega(d^2 \log_d m)$

Gaps:

- Constant mixing time: none
- Expanders: O(log² m)
- Barbell: O(m)

3. Unconstraining2. graph-constrained1. group testing

Informal result

If a graph *sufficiently well-enough connected*, we can find any set of *d* defective edges using $O(d^2 \log m)$ tests

Same as unconstrained group testing

nected, we can g O(d² log m) tests d group testing

(β, α) -expanders

All sets S of size at most β n have a boundary of at least α |S| edges

Examples of (β, α) -expanders

α

n/2

at least α|S| edges

Main Theorem

Let G = (V,E), |V| = n, |E| = m be a (β,α)-expander, and

 $d \ge 0$ where

 $\alpha \geq d/2 + O(1).$

Then there exists a set of O(β -1d² log m) tests that identify any set of at most d defective edges.

Special Cases

Graph	Source
Complete	[CKMS10]
	Our work
D-regular expander	[HPW+07]
	[CKMS10]
	Our work
Erdös-Rényi Graph G(n,D/n)	[CKMS10]
	Our work
Barbells	[HPW+07]
	[CKMS10]
	Our work

Number of Tests	At most $d \le d_0$ failures
O(d²log m)	d₀ = Ω(m)
O(d²log m)	$d_0 = \Omega(m)$
O(d ³ log m)	$d_0 = \Omega(D)$
O(d²log³m)	$d_0 = \Omega(D/log^2m)$
O(d²log m)	$d_0 = \Omega(D)$
O(d²log³m)	$d_0 = \Omega(D/log^2m)$
O(d²log m)	$d_0 = \Omega(D)$
O(d ³ log m)	d ₀ = 1
O(m)	d o = m
O(d²log m)	$d_0 = \Omega(m)$

Algorithm

For 1...T:

- Include each edge with probability p ~ 1/d
- Use connected components larger than βn

Proof outline

- Recall from earlier, if we just pick edges with probability ~1/d, we win if the resulting graph is connected.
- If K ~ d log n, just pick each edge with probability ~1/d, the resulting graph is connected by [Karger 94]
- We show *most* of the graph is connected when we pick each edge with probability ~1/d

Giant components

Model: Fix a graph, keep each edge independently with probability p.

Lots of previous work shows large connected components exist above some value of p:

• [Erdös-Rènyi 59]
$$p = \frac{1+\epsilon}{n}$$

• Expanders
$$p = \frac{1+\epsilon}{\alpha}$$

We show something stronger:

• For each edge, the probability the edge is picked and included in a giant component is at least $p\epsilon/8$

Open problems

- Result for an arbitrary graph (start with a hypercube)
- Find a deterministic algorithm

Thank you!

Technical Result

Let G=(V,E) be a (β,α) -expander, 0 , <math>G(p) be the subgraph of G constructed by including each edge independently with probability p, and C(u,v) be the connected component of G(p) including edge (u,v).

If
$$p \ge \frac{1+\epsilon}{\alpha}$$
,

then for all $(u, v) \in E$

 $\mathbb{P}(|C(u,v)| \ge \beta n) \ge \epsilon/2$