
Unconstraining
graph-constrained
group testing
Bruce Spang*, Mary Wootters
September 20, 2019

3. Unconstraining
2. graph-constrained
1. group testing

🤠 🤠 🤠 🤠

🤠 🤠
Sick :(

🤢🤠

Group Testing
The setting is World War II…

Group Testing

🤠 🤠 🤠 🤠

🤠 🤠
Sick :(

🤢🤠
💉

Ok

Sick :(

Ok

Don’t need individual tests

🤠 🤠 🤠 🤠

🤠 🤠 🤢🤠

We know this person is sick

OkSick :(

Ok

Need to carefully design tests

🤠 🤠 🤠 🤠

🤢 🤠 🤠🤠

We can’t distinguish these two

OkSick :(

Ok

Need to carefully design tests

🤠 🤠 🤠 🤠

🤠 🤢 🤠🤠

We can’t distinguish these two

Group Testing Problem
We have m items, at most d of which are defective.

Definition: A test returns whether a subset of items
includes any defectives or not.

Problem: Construct a set of tests which can identify any
set of at most d defective items.

Some known results
O(d2 log m) easy construction

Ω(d2 logd m) lower bound [Dyachkov-Rykov 82]

Include each person in a test
with probability 1/(d+1)

Random is pretty close to optimal

check citation style

3. Unconstraining
2. graph-constrained
1. group testing

A network

A network, failing

🔥

Finding failures

🔥

💌

Finding failures

🔥

💌

Graph-constrained Problem

We have a graph G=(V,E) with n nodes and m edges, at
most d edges are defective.

Definition: A graph-constrained test returns whether
any edges in a connected subset of edges are defective
or not.

Problem: Construct a set of graph-constrained tests
which can identify any set of at most d defective edges.

Our informal result
“You can do this nearly-optimally for lots of graphs
(more than previously known)”

This seems surprising
For some graphs, these constraints matter a lot

Theorem [Harvey et al 2007]: For the cycle graph on n
nodes, at least n/2 tests required

Proof: Each neighboring pair of edges must be
separated by some test. Each test is a path and can only
separate two pairs. There are about n pairs.

Harvey et al 2007
Most general result: for any graph with more than d
edge-disjoint spanning trees, can use O(d3 log m) tests
to identify at most d defective edges.

X

Harvey et al 2007
Most general result: for any graph with more than d
edge-disjoint spanning trees, can use O(d3 log m) tests
to identify at most d defective edges.

Cheraghchi et al 2010
• Current state of the art

• Each test is a random walk on the graph

• For certain graphs, can do it in O(τ2d2 log m) tests!

D-regular graphs, D ≥ 6d log2 n

Cheraghchi et al 2010
Good parts

• Optimal for a complete graph!

• Good expanders are nearly optimal:
off by O(log2 m)

Limitations

• Degree requirement of log n means
it can’t deal with constant-degree
expanders

• Barbell feels like it should work but
doesn’t:

n/2 n/2

Summary
Problem: group testing, each test is connected subgraph

Lower bound: Ω(d2 logd m)

Gaps:

• Constant mixing time: none

• Expanders: O(log2 m)

• Barbell: O(m)

3. Unconstraining
2. graph-constrained
1. group testing

Informal result
If a graph sufficiently well-enough connected, we can
find any set of d defective edges using O(d2 log m) tests

Same as unconstrained group testing

(β,α)-expanders
All sets S of size at most βn have a boundary of at least
α|S| edges

S
|S| ≤ βn

V \ S

at least α|S|
edges

Examples of (β,α)-expanders

Graph β α

Edge expander 1/2 α

Complete 1/2 n/2

Barbell 1/4 n/4

S
|S| ≤ βn

V \ S

at least α|S|
edges

Main Theorem
Let G = (V,E), |V| = n, |E| = m be a (β,α)-expander, and

d ≥ 0 where

 α ≥ d/2 + O(1).

Then there exists a set of O(β-1d2 log m) tests that

identify any set of at most d defective edges.

Special Cases
Graph Source Number of Tests At most d ≤ d0

failures

Complete
[CKMS10] O(d2log m) d0 = Ω(m)

Our work O(d2log m) d0 = Ω(m)

D-regular expander

[HPW+07] O(d3log m) d0 = Ω(D)

[CKMS10] O(d2log3m) d0 = Ω(D/log2m)

Our work O(d2log m) d0 = Ω(D)

Erdös-Rényi Graph
G(n,D/n)

[CKMS10] O(d2log3m) d0 = Ω(D/log2m)

Our work O(d2log m) d0 = Ω(D)

Barbells
[HPW+07] O(d3log m) d0 = 1

[CKMS10] O(m) d0 = m

Our work O(d2log m) d0 = Ω(m)

Algorithm
For 1…T:

• Include each edge with probability
p ~ 1/d

• Use connected components larger
than βn

14

15

17

22

19

24

25

26

16

18

20

21

2327

0

3

4

7

8

9

12

13

1

11

2

6

5

10

Proof outline
• Recall from earlier, if we just pick edges with

probability ~1/d, we win if the resulting graph is
connected.

• If K ~ d log n, just pick each edge with probability ~1/d,
the resulting graph is connected by [Karger 94]

• We show most of the graph is connected when we
pick each edge with probability ~1/d

Giant components
Model: Fix a graph, keep each edge independently with
probability p.

Lots of previous work shows large connected components
exist above some value of p:

• [Erdös-Rènyi 59]

• Expanders

We show something stronger:

• For each edge, the probability the edge is picked and
included in a giant component is at least pε/8

p =
1 + ϵ

n

p =
1 + ϵ

α

0

3

4

7

8

9

12

13

1

11

2

6

5

10

Open problems
• Result for an arbitrary graph (start with a hypercube)

• Find a deterministic algorithm

Thank you!

Technical Result
Let G=(V,E) be a (β,α)-expander, 0 < p < 1, G(p) be the
subgraph of G constructed by including each edge
independently with probability p, and C(u,v) be the
connected component of G(p) including edge (u,v).

If

then for all

p ≥
1 + ϵ

α
,

(u, v) ∈ E

ℙ(|C(u, v) | ≥ βn) ≥ ϵ/2

